scholarly journals Radiodensity of Various Dental Biomaterials for Endodontics: The Role of Particle Size

Author(s):  
Mohammad Ali Saghiri ◽  
Steven M Morgano ◽  
Hamed Kazerani ◽  
Shuying Jiang ◽  
James L Gutmann ◽  
...  

Introduction: The thickness threshold for detecting endodontic biomaterials depends on many factors, such as the nature of the radiopacifier and the particle size. Aim: The aim of this study was to determine the effect of thickness on radiodensity of various endodontic biomaterials; and evaluate the impact of radiopacifier particle size on radiodensity. Materials and Methods: This in-vitro study was conducted between August 2018 to December 2019. The study was divided in two parts, in first part, Six endodontic biomaterials (AH26, EndoSequence, Endoseal Mineral Trioxide Aggregate (MTA), Nano-MTA, Endocem Zr, and MTA without radiopacifier) were selected and evaluated in different thicknesses, in second part, MTA mixed with Bismuth oxide 10 μm, 200 μm, 120 nm (Groups 1-3), and Zirconium oxide 5 μm, 1 μm and 20 nm (Groups 4-6) were placed in frames with 1 mm, 0.5 mm, 0.2 mm, 0.1 mm thicknesses to evaluate the radiopacity. Results: The mean radiodensity was significantly different among various thickness (p<0.001) and materials (p<0.001). The changes of the radiodensity in various thickness from one material to the other were not uniform (interaction p-value <0.001). A 1 mm thickness had highest radiodensity (206.6±83.99), followed by 0.5 mm (68.9±24.6), 0.2 mm (17.9±4.9), and 0.1 mm thick material had least radiodensity (11.97±4.37). Materials of AH26 (99.1±103.2), Nano MTA (97.4±104.9), Endoseal MTA (87.86±101.4), Endosequence BC sealer (85.5±93.87) and Endocem Zr (71.88±77.67) were significantly different from the control group (16.38±10.85). The size of particles played important role in radiodensity (p<0.001). The radiodensity of Fine GIII (100 nm) material (112.68±108.47) was significantly higher than other materials: Thin GII (200 nm) (100.9±102.4), Fine GVI (20-40 nm) (99.7±95.1), Coarse GI (10 μm) (76.66±74.75), Thin GV (1~3 μm) (63.19±67.3), Coarse GIV (5 μm) (49.66±51.59) and MTA without Radiopaque Agent GVII (100%) (23.67±19.68). The effect of the thickness on radiodensity was different for each biomaterial, with significant differences from the control group. Conclusion: One of the readily available methods for increasing radiodensity is to increase the amount of radiopacifier, which might compromise the physical properties of the material. Fine particle radiopacifier (120 nm) with 1 mm thickness has significantly higher radiodensity than any other biomaterials in this study. Within the limitations of the current study, it can be concluded that the radiopacifier particle size has a significant impact on the level of radiodensity of dental biomaterials. Finding the optimum distribution, size, and geometry of radiopacifier particles within the same fraction rate can enhance the radiodensity.

2021 ◽  
Vol 22 (3) ◽  
pp. 1222
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Inmaculada Parrilla ◽  
Heriberto Rodriguez-Martinez ◽  
...  

This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.


2019 ◽  
Author(s):  
Sakti Charlia Maharani ◽  
Indah Julianto ◽  
Suci Widhiati

Beluntas (Pluchea indica Less.) is a herbal plant which contains variety of benefits. Quercetin, one of flavonoid, is the most bioactive agent in beluntas leaf. Collagen inhibition by quercetin may modulate extracellular matrix deposition and inhibit the formation of hypertrophic scar. This was an in vitro study with senescent fibroblasts to determine the role of beluntas leaf extract in preventing the occurence of fibroblasts hyperproliferations. There were 4 groups were stained by anti-collagen I antibodies and secondary antibody. Flowcytometry analysis was done to measure the fibroblasts density. Anova test was performed with a value of p=0.000 (p<0.05). A post hoc analysis showed significant differences in the average decrease of fibroblasts that absorbs staining anti-collagen I antibody treatment group compared with the control group. There were significant effects of beluntas leaf extract in preventing the occurrence of fibroblasts hyperproliferations. Beluntas leaf extract with a concentration of 80 mol/L had the most significant effect on the fibroblasts density. Thus beluntas leaf extract has the ability in preventing the occurrence of fibroblasts hyperproliferation.


Author(s):  
Arunjaikumar Ravindran ◽  
Suma Karthigeyan ◽  
Ramesh Bhat ◽  
Madhulika Naidu ◽  
Senthilnathan Natarajan ◽  
...  

Introduction: Zirconia is considered as an alternative material for the fabrication of implants. Surface roughness of the implant plays a fundamental role in the initial bone formation. The rationale of using 3D optical profilometry in this study was to evaluate the surface roughness of the zirconia implants before and after Ultraviolet (UV) photofunctionalisation. Also, Moreso 3D optical instruments have a better resolution than the mechanical ones like Atomic Force Microscopy (AFM). Aim: To analyse the surface roughness and topography of zirconia implants after photofunctionalisation using optical profilometry. Materials and Methods: This is an in-vitro study conducted over a period of six months from March 2020 to August 2020. Ten commercially machined Zirconia implants, five each in study and control group, were micro analysed at three different regions (abutment, thread and crest) by optical profilometry. Study group was surface treated by UV radiation for 48 hours. Quantitative morphometric analysis was done between two groups and p-value less than 0.05 was considered statistically significant. The statistical test applied in this study was independent t-test. Results: Scanning micrographs of the study group revealed highest density of summits contributing to increased surface area in the study group. Quantitative analysis of surface roughness showed statistically significant higher mean roughness parameter for photofunctionalised implants in abutment, crest and thread region (p<0.05). Conclusion: Photofunctionalisation is a potentially synergistic technique in producing textured zirconia implants.


2021 ◽  
Vol 22 (18) ◽  
pp. 9986
Author(s):  
Giulia Brunello ◽  
Kathrin Becker ◽  
Luisa Scotti ◽  
Dieter Drescher ◽  
Jürgen Becker ◽  
...  

Several decontamination methods for removing biofilm from implant surfaces during surgical peri-implantitis treatment have been reported, including the intraoperative usage of chlorhexidine (CHX)-based antiseptics. There is a lack of information on possible adverse effects on bone healing. The study aimed to examine the impact of three CHX-based mouthwashes on osteoblast-like cells (SaOS-2) in vitro. Cells were cultured for three days in 96-well binding plates. Each well was randomly treated for either 30, 60 or 120 s with 0.05% CHX combined with 0.05% cetylpyridinium chloride (CPC), 0.1% CHX, 0.2% CHX or sterile saline (NaCl) as control. Cell viability, cytotoxicity and apoptosis were assessed at day 0, 3 and 6. Cell viability resulted in being higher in the control group at all time points. At day 0, the CHX 0.2 group showed significantly higher cytotoxicity values compared to CHX 0.1 (30 s), CHX + CPC (30 s, 60 s and 120 s) and control (60 s and 120 s), while no significant differences were identified between CHX + CPC and both CHX 0.1 and NaCl groups. All test mouthwashes were found to induce apoptosis to a lower extent compared to control. Results indicate that 0.2% CHX presented the highest cytotoxic effect. Therefore, its intraoperative use should be carefully considered.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Paridokht Zarean ◽  
Parichehr Zarean ◽  
Arash Ravaghi ◽  
Maryam Zare Jahromi ◽  
Mitra Sadrameli

Background. Internal bleaching is a choice of treatment in discolored endodontically treated teeth. Cervical root resorption is one of the important complications of this treatment. A suggested procedure to prevent this type of resorption is using a coronal barrier under the bleaching materials. The aim of the study was to compare the microleakage of mineral trioxide aggregate (MTA), calcium-enriched mixture (CEM) cement, and Biodentine. Materials and Methods. In this in vitro study, a total of 60 single canal incisors were included. They were randomly divided into three experimental groups (n = 16), one positive control group (n = 6), and one negative control group (n = 6). Coronal portion of the canals in the experimental groups was sealed with 3 mm of MTA, CEM cement, or Biodentine as a coronal barrier. After 3 days, specimens were bleached. A fresh Enterococcus faecalis suspension was added to the samples. The culture tubes were observed for 45 days, and the daily turbidity was recorded. Statistical analysis was accomplished by the Kaplan–Meier test and SPSS 22. Results. All positive samples showed turbidity, whereas none of the negative samples allowed bacterial leakage. Results showed no significant difference between MTA, CEM cement, and Biodentine groups. ( P value = 0.304, 0.695, and 0.217). The bacterial microleakage for the two groups also did not show significant differences. Conclusions. CEM cement and Biodentine showed promising results as coronal plug, and clinical studies are needed to test these materials with MTA for avoiding microleakage in internal bleaching treatment.


Author(s):  
Güney Mustafa Yüzer ◽  
Sadullah Kaya

Introduction: Furcation perforation is one of the complications that occur during endodontic treatment due to anatomical differences or iatrogenic causes. Repairing the perforation with a biocompatible material eliminates the connection with the gingival sulcus and positively affects the prognosis. The sealing ability of the repair materials is very important and is affected by the conditions of the environment in which they are applied. Aim: To compare the sealing efficiency of Mineral Trioxide Aggregate (MTA) (Angelus, Londrina, PR, Brazil) and Biodentine (Septodont, Saint Maur des Fosses, France) materials used in the repair of furcation perforations in acidic and neutral environments. Materials and Methods: This in-vitro experimental study was carried out in the Department of Endodontics at Dicle University Faculty of Dentistry, Diyarbakır, Türkiye and Dicle University Science and Technology Application and Research Center from 10th June 2020 to 22nd July 2020. A total of 96 mandibular molars were used in the study. The specimens were randomly divided into two equal groups (n=48). When the perforations were repaired with MTA and Biodentine materials, each group was divided into four subgroups (n=12). These subgroups were kept in Phosphate Buffered Saline (PBS) and Acetic Acid (AA) solutions for different periods of time from 4 or 34 days, and all groups were immersed in methylene blue solution. The dye penetration level of the divided sections was examined under a stereomicroscope (Leica, Wetzlar, Germany). Microleakage data of all groups were statistically analysed using Kolmogorov Smirnov, Shapiro Wilk’s and Mann-Whitney U Test. Statistical significance was set at 0.05, it was stated that there was a significant difference when p-value <0.05. Results: The short-term (4 days) microleakage level of biodentine material in the AA environment was significantly lower than that of MTA material (p-value=0.005). There was no statistically significant difference between the materials in terms of long-term (34 days) microleakage levels in the AA environment (p-value >0.05). The long-term microleakage level in PBS environment of biodentine material was significantly lower than that of the AA environment (p-value=0.008). Conclusion: Lower microleakage levels were observed in the neutral environment than the acid environment with both MTA and biodentine during both holding periods.


Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2310
Author(s):  
Achmad Adhipatria Perayabangsa Kartamihardja ◽  
Winda Ariyani ◽  
Hirofumi Hanaoka ◽  
Ayako Taketomi-Takahashi ◽  
Noriyuki Koibuchi ◽  
...  

Gadolinium deposition in the brain has been observed in areas rich in iron, such as the dentate nucleus of the cerebellum. We investigated the role of Fe2+ in the effect of gadolinium-based contrast agents (GBCA) on thyroid hormone-mediated Purkinje cell dendritogenesis in a cerebellar primary culture. The study comprises the control group, Fe2+ group, GBCA groups (gadopentetate group or gadobutrol group), and GBCA+Fe2+ groups. Immunocytochemistry was performed with an anti-calbindin-28K (anti-CaBP28k) antibody, and the nucleus was stained with 4′,6-diamidino-2-phenylindole (DAPI). The number of Purkinje cells and their arborization were evaluated with an analysis of variance with a post-hoc test. The number of Purkinje cells was similar to the control groups among all treated groups. There were no significant differences in dendrite arborization between the Fe2+ group and the control groups. The dendrite arborization was augmented in the gadopentetate and the gadobutrol groups when compared to the control group (p < 0.01, respectively). Fe2+ significantly increased the effect of gadopentetate on dendrite arborization (p < 0.01) but did not increase the effect of gadobutrol. These findings suggested that the chelate thermodynamic stability and Fe2+ may play important roles in attenuating the effect of GBCAs on the thyroid hormone-mediated dendritogenesis of Purkinje cells in in vitro settings.


2020 ◽  
Vol 11 (7) ◽  
pp. 6680-6691 ◽  
Author(s):  
Natalia Rosa-Sibakov ◽  
Noora Mäkelä ◽  
Anna-Marja Aura ◽  
Tuula Sontag-Strohm ◽  
Emilia Nordlund

The objective of this work was to evaluate the role of β-glucan molecular weight (Mw) and the presence of other carbohydrates on the physiological functionality of oat bran via an in vitro digestion study.


2020 ◽  
Vol 10 (19) ◽  
pp. 6713
Author(s):  
Damiano Pasqualini ◽  
Allegra Comba ◽  
Laura Annaratone ◽  
Virginia Mola ◽  
Mario Alovisi ◽  
...  

Recently, pre-mixed bioceramics in fast set formulations have been increasingly utilized in clinical practice as an alternative to mineral trioxide aggregate (MTA) for their shorter setting time and better handling properties. However, the impact on their osteogenic potential, due to modifications in chemical composition to promote a fast setting, is still unclear. This molecular and in vitro study compared the osteogenic potential of root repairing material putty fast set (FSP) with root-repairing material putty (RRMPU), root-repairing material paste (RRMPA), Biodentine™ and MTA. The null hypothesis tested was that there are no differences among the tricalcium silicate materials in terms of osteogenic potential. Standardized discs were cultured with MG-63 human osteoblastic-like cells to assess biocompatibility, the activity of alkaline phosphatase (ALP) and osteogenic potential. Biocompatibility was evaluated at baseline and after 24 and 48 h. Osteogenic differentiation was assessed after 15 days. Data were analyzed with one-way ANOVAs and Tukey’s post-hoc test (p < 0.05). All materials showed biocompatibility and bioactivity. ALP activity, which induces mineral nodule deposition, increased in all the cements tested, with a significant increase in RRMPU (p < 0.001) and FSP (p < 0.001) samples versus MTA. In vitro mineralization was significantly increased for RRMPU (p < 0.0001), FSP (p = 0.00012) and Biodentine™ (p < 0.0001) versus MTA. The bioceramics tested showed higher levels of biocompatibility and bioactivity than MTA; a higher capacity for mineralization was observed with RRMPU and FSP versus MTA.


2021 ◽  
Vol 1 (3) ◽  
Author(s):  
Ricardo Novak Savioli

Proposition: To evaluate the physical properties of flow and solubility of pure and improved mineral trioxide aggregate (MTA) cement with the addition of two plasticizing agents: sodium ether polycarboxylate and sodium naphthalene sulfonate at three different concentrations. Material and Methods: Flow and solubility tests were carried out using the established methodology recommended by the 57 ANSI/ADA and ISO 6876:2012 standards. Pure MTA was used as control group and was compared to the MTA containing sodium ether polycarboxylate and sodium naphthalene sulfonate at concentrations of 0.5%, 1.0% and 1.5%. Data were analyzed by one-way analysis of variance followed by a post-hoc Tukey test at a 5% significance level. Results: Sodium ether polycarboxylate increased the MTA flow at the three concentrations. The flow increased with increasing concentration (P<0.05). Sodium sulfonate naphthalene also facilitated flow, though it was inferior to sodium ether polycarboxylate. Sodium naphthalene sulfonate promoted a significant increase in the solubility of MTA (p=0.000). Conclusions: The additives improved the physical properties of MTA. Sodium ether polycarboxylate was found to be superior to sodium naphthalene sulfonate at all concentrations.


Sign in / Sign up

Export Citation Format

Share Document