scholarly journals Unexpected Covariances between Shell Growth Parameters are Controlling the Range of Interspecific Variations of Shell shape in the Deep-Sea Clams Genus Calyptogena (Bivalvia: Veneroida)

Author(s):  
Jean Béguinot

In Bivalves, shell shape descriptors (in particular, elongation E, dissymmetry D, ventral convexity K) are considered functionally-relevant parameters, each of them likely being exposed to specific selective pressures, according to environmental conditions. Indeed, previous investigations, have repeatedly confirmed that different types of constraints do apply to the respective ranges of interspecific variations of E, D, K: in particular, a trend for a substantially extended range of interspecific variation of shell-elongation E (likely attributed to niche differentiation) and, on the contrary, a trend for a severely restricted range of interspecific variation of ventral-convexity K (closely centered at an optimum for mechanical resistance of valves). In turn, due to rigid geometrical relationships linking shell-shape to shell-growth, this pattern of constraints on shell-shape variations implies, mathematically, the occurrence of specifically associated covariances between shell-growth parameters, the occurrence of which were, indeed, repeatedly observed within all groups of shallow-waters clams examined so far. Yet, the fairly different environmental conditions prevailing at bathyal / abyssal depths invite addressing comparatively some typically deep-sea clams; hereafter the genus Calyptogena. Contrary to expectation, the same types of covariances between shell-growth parameters are reported in deep-sea Calyptogena as those reported in shallow-waters clams, thus suggesting less dissimilar patterns of constraints than expected between shallow waters and deep-sea conditions.

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Jean Béguinot

Specific parameters characterising shell shape may arguably have a significant role in the adaptation of bivalve molluscs to their particular environments. Yet, suchfunctionally relevantshape parameters (shell outline elongation, dissymmetry, and ventral convexity) are not those parameters that the animal may directly control. Rather than shell shape, the animal regulates shell growth. Accordingly, an alternative,growth-baseddescription of shell-shape is best fitted to understand how the animal may control the achieved shell shape. The key point is, in practice, to bring out the link between those two alternative modes of shell-shape descriptions, that is, to derive the set of equations which connects thegrowth-basedshell-shape parameters to thefunctionally relevantshell-shape parameters. Thus, a preliminary object of this note is toderivethis set of equations as a tool for further investigations. A second object of this work is to provide an illustrative example of implementation of this tool. I report on an unexpected negative covariance between growth-based parameters and show how this covariance results in a severe limitation of the range of interspecific variability of the degree of ventral convexity of the shell outline within the superfamily Tellinoidea. Hypotheses are proposed regarding the constraints possibly at the origin of this limitation of interspecific variability.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Jean Béguinot

Major traits of shell shape in bivalves may alternatively be described in terms of (i) functionally relevant parameters, assumed to play a significant role in the adaptation of bivalves molluscs to their environments (such as the shell-outline elongation E, ventral convexity K, and dissymmetry D), or (ii) growth-based parameters, directly controlled by the animal. Due to the geometrical linkage between functionally-relevant and growth-based parameters, adaptive constraints that may either widen or narrow the respective ranges of variations of the functional parameters lead to the onset of specific covariations (either positive or negative) between the growth-based parameters. This has practical interest since adaptive constraints are often difficult to identify directly, while they can be conveniently inferred indirectly via the easily recorded patterns of covariances between growth-based parameters. Hereafter, I provide the theoretical background of this tool, including (1) establishing the geometrical relationships between growth-based and functionally relevant parameters and (2) then specifying the correspondences between the different patterns of adaptive constraints, widening or narrowing the variations of the functional parameters and the corresponding patterns of covariations between the growth-based parameters. Illustrative examples of the practical use of this tool are provided, considering both interspecific and intraspecific variations within marine and fresh-water clams.


2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


Author(s):  
P. A. Tyler ◽  
J. D. Gage

INTRODUCTIONOphiacantha bidentata (Retzius) is a widespread arctic-boreal ophiuroid with a circumpolar distribution in the shallow waters of the Arctic seas and penetrating into the deep sea of the.North Atlantic and North Pacific (Mortensen, 1927, 1933a; D'yakonov, 1954). Early observations of this species were confined to defining zoogeo-graphical and taxonomic criteria including the separation of deep water specimens as the variety fraterna (Farran, 1912; Grieg, 1921; Mortensen, 1933a). Mortensen (1910) and Thorson (1936, pp. 18–26) noted the large eggs (o.8 mm diameter) in specimens from Greenland and Thorson (1936) proposed that this species had ‘big eggs rich in yolk, shed directly into the sea. Much reduced larval stage or direct development’. This evidence is supported by observations of O. bidentata from the White and Barents Seas (Semenova, Mileikovsky & Nesis, 1964; Kaufman, 1974)..


2015 ◽  
Vol 29 (2) ◽  
pp. 105 ◽  
Author(s):  
Mindi Summers ◽  
Fredrik Pleijel ◽  
Greg W. Rouse

Phylogenetic relationships within Hesionidae Grube, 1850 are assessed via maximum parsimony and maximum likelihood analyses of mitochondrial (cytochrome c oxidase subunit I and 16S rRNA) and nuclear (18S rRNA, and 28S rRNA) data. The analyses are based on 42 hesionid species; six of these being new species that are described here. The new species, all from deep (>200 m depth) benthic environments (including whale falls) in the eastern Pacific, are Gyptis shannonae, sp. nov., Neogyptis julii, sp. nov., Sirsoe sirikos, sp. nov., Vrijenhoekia ketea, sp. nov., Vrijenhoekia falenothiras, sp. nov., and Vrijenhoekia ahabi, sp. nov. The molecular divergence among the new members of Vrijenhoekia is pronounced enough to consider them cryptic species, even though we cannot distinguish among them morphologically. Our results also showed that the subfamily Hesioninae Grube, 1850, as traditionally delineated, was paraphyletic. We thus restrict Hesioninae to include only Hesionini Grube, 1850 and refer the remaining members to Psamathinae Pleijel, 1998. The present study increases the number of hesionid species associated with whale falls from one to six and markedly increases the number of described deep-sea hesionid taxa. There appear to have been multiple colonisations of the deep sea from shallow waters by hesionids, though further sampling is warranted.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Cuckoo Mahapatra ◽  
Pravati Kumari Mahapatra

Anurans breed in an array of habitats and hence employ a variety of evolutionary strategies to adapt to the variable conditions. Particularly, since they undergo a larval phase they develop mechanisms to overcome unfavourable conditions like desiccation, extreme temperatures, and so forth. The anurans, Polypedates maculatus and Duttaphrynus melanostictus, show noticeable variation in the duration of larval period and tadpole tail regression. D. melanostictus breeds throughout the year and hence is subjected to different environmental conditions as compared to P. maculatus which breeds only during the rainy season. Thus, the tadpoles of D. melanostictus have selected to undergo a shorter larval period and duration of tail regression to suit their breeding habits. The present study correlates the interspecific difference in the duration of tail regression with the morphological variations in the tails of the two species. D. melanostictus shortens the duration of larval tail regression by having comparatively larger and more number of melanocytes and a thinner notochord than P. maculatus.


2020 ◽  
Vol 84 (4) ◽  
pp. 393-401
Author(s):  
Yamila Gonzalez Giorgis ◽  
María Cruz Sueiro ◽  
Federico Márquez

Understanding phenotypic plasticity of species at different spatial scales is vital in the current context of an increasing pace of environmental changes. Through this knowledge, it is possible to predict their potential to adapt and/or evolve in face of new environmental conditions such as climate change, and/or to understand their ecological range expansion. In Patagonian rocky salt-marshes, one of the most abundant invertebrate species is the scorched mussel Perumytilus purpuratus. In this system, this mussel can be found inhabiting both vegetated and non-vegetated patches, which differ in critical environmental conditions. We performed a field study evaluating whether mussels growing in vegetated patches differ in shell shape from those growing in adjacent non-vegetated patches. We sampled individuals from both patch types and assessed their shell shape and size using geometric morphometrics. The results showed that mussels from vegetated patches had shells that were more dorsoventrally expanded, anterodorsally restricted and globose in shape than those from non-vegetated patches, which showed the opposite traits resulting in a more elongated shell. The differences found could be driven by the different conditions of temperature, desiccation rate, wave action and population density to which mussels are exposed in each patch type. These results revealed the striking phenotypic plasticity of shell form of this native species at a fine-grained scale, which could be one of the explanations for its success in its ecological range expansion.


Paleobiology ◽  
1996 ◽  
Vol 22 (3) ◽  
pp. 386-405 ◽  
Author(s):  
Richard D. Norris ◽  
Richard M. Corfield ◽  
Julie Cartlidge

Analysis of the evolution of the Globorotalia (Fohsella) lineage of planktic foraminifera suggests that reproductive ecology and shell shape have evolved independently in this group. The silhouette of fohsellid shells displays a nearly unbroken anagenetic trend, yet isotopic data show that the fohsellids changed their depth of reproduction during the anagenetic evolution of their skeletons. Remarkably, there are no correlations between anagenesis in skeletal shape and the establishment of reproductive isolation. Apparently, anagenesis masks at least one speciation event that is apparent only in the isotopic evidence for a change in reproductive ecology. Although anagenetic trends have been widely cited as evidence for gradual speciation in planktic foraminifera and other microfossil groups, our data suggest that they should not always be considered to record either the tempo or mode of speciation.Speciation was apparently uncoupled from morphological evolution in fohsellids because these evolutionary phenomena occurred in different phases of ontogeny. Gradual morphological changes were associated with the main phase of shell growth of both the ancestor and descendant species in the near-surface ocean. Reproductive isolation occurred when ancestral and descendant populations became established at different depths near the end of the life cycle. Morphological evolution may also be uncoupled from reproductive isolation in other organisms that experience very different selection pressures over the duration of their ontogenies, such as parasites with many hosts, species with multiple phases of metamorphosis, and organisms that broadcast their gametes.


Author(s):  
Christopher Brokmann ◽  
Stefan Kolling ◽  
Jens Schneider

Abstract In the present work, subcritical crack growth in soda–lime silicate glass is investigated under different environmental conditions. Crack growth parameters as a function of temperature and humidity were determined by dynamic fatigue tests, which has been verified by using the in-situ method of filming crack growth during experiments. The specimens were pre-damaged for constant initial crack lengths in all specimens using the Vickers indentation test. The determined parameters were compared with those from literature in order to discuss existing deviations of sub-critical crack growth parameters in literature. These deviations may be caused by environmental conditions and different chemical compositions of the glass. Arrest lines were used to determine the ratio of crack width to crack depth in Vickers indented specimens. For the initial crack depth, images of fracture surfaces were taken using an scanning electron microscope. Furthermore, the influence of humidity and temperature on the failure stress of unindented specimens with a constant initial crack length was simulated.


2020 ◽  
Vol 98 (7) ◽  
pp. 481-494
Author(s):  
M.C. Risoli ◽  
A. Baldoni ◽  
J. Giménez ◽  
B.J. Lomovasky

Morphometric relationships and age and growth rates of the yellow clam (Mesodesma mactroides Reeve, 1854 = Amarilladesma mactroides (Reeve, 1854)) were compared in two populations from Argentina: Santa Teresita (36°32′00″S) and Mar del Plata (37°57′52″S). The Santa Teresita clams were heavier (shell, soft parts) than the Mar del Plata clams. Cross sections stained with Mutvei’s solution and acetate peels revealed an internal shell growth pattern of well-defined slow-growing translucent bands and alternating fast-growing opaque bands. Translucent bands (clusters) representing external rings were formed mostly during October in both sites, coinciding with gonadal maturation processes and spawning. Data confirm the annual formation of translucent bands in this species. Comparison of growth parameters showed a higher growth rate k and lower maximum age in Mar del Plata (8 years) than in Santa Teresita (9 years), which could be triggered by differences in salinity between localities due to the influence of the Rio de la Plata estuary, which is strongly linked to climate variability. Shell mass condition index and Oceanic Niño Index were negatively correlated, showing the influence of El Niño in shell properties of the species. Considering that events are becoming more intense and frequent, changes in growth rates and shell properties of Santa Teresita’s population could be expected to be more vulnerable under climate change.


Sign in / Sign up

Export Citation Format

Share Document