scholarly journals Microbial Communities of Culture Water and African Catfish Reared in Different Aquaculture Systems in Nigeria Analyzed Using Culture Dependent Techniques

Author(s):  
D. Enyidi Uchechukwu ◽  
M. T. Okoli

The microbial communities of culture water and catfish C. gariepinus from three replicates of earthen, concrete and tarpaulin ponds in Nigeria were analyzed. Waters was collected from 25 cm below pond water surface per culture system. Three catfish per replicate system were also collected and analyzed in the lab. Catfish gut, skin and gills were analyzed. Earthen ponds had significantly more diverse microbial community and coliform forming units (CFU/ml) 2.43 x10-4 CFU/ml than the rest systems. Earthen ponds had consortium of Klebsiella pneumonia, S. aureus and Salmonella enteritidis and E. coli, which was more diverse than all other aquaculture systems.  Microbiota of tarpaulin ponds was 2.10x10-4 /ml CFU and this was significantly (P<0.05) higher than concrete ponds (1.50x10-4 CFU/ml). Tarpaulin ponds had K. pneumoniae and E. coli, while concrete pond had S. aureus and S. enteritidis. Biofilm formation could have lead to colonization of the fish body part. The skin and gills had similar microbiota as the culture water compared to the gut. The gut microbial communities were not synonymous with the culture water.

2022 ◽  
Author(s):  
ADEWALE OLUWASOGO OLALEMI ◽  
OLUWABUSAYOMI MARY OLUYEMI ◽  
MICHAEL TOSIN BAYODE

Abstract Background This study was carried out to monitor the levels of faecal pollution markers in catfish (Clarias gariepinus) and their growing waters in selected earthen and concrete ponds. Water and catfish samples were collected weekly in the months of February, March, April, May, June and July, 2019. The concentrations of enteric bacteria in the water and catfish samples were determined using membrane filtration and pour plate methods, respectively. The rate of bioaccumulation of faecal indicator bacteria was obtained by dividing the log concentration of each organism in catfish by the corresponding log concentration in the growing waters. Result The concentration of faecal coliforms in catfish samples from concrete and earthen ponds ranged from 1.41 to 2.28 log10 CFU/100 ml and 1.3 to 2.47 log10 CFU/100 ml respectively and in growing waters from the concrete and earthen ponds; 1.43 to 2.41 log10 CFU/100 ml and 1.50 to 2.80 log10 CFU/100 ml respectively. Faecal coliforms exhibited positive relationships with alkalinity in water samples from the earthen (r = 0.61) and concrete ponds (r = 0.62). Salmonella and faecal coliforms had the highest and least bioaccumulation in catfish raised in earthen pond, respectively, whereas Salmonella and enterococci had the highest and least bioaccumulation in catfish raised in concrete pond, respectively. Faecal coliforms and E. coli had the highest and least counts in water samples from the earthen pond during the dry and wet months, Salmonella and E. coli had the highest and least counts in water samples from the concrete pond during the dry and wet months. Conclusion There were high levels of bacterial faecal pollution markers in water and C. gariepinus from the earthen and concrete ponds. Physicochemical characteristics of the water and seasonality played major roles in the rate of bioaccumulation of the faecal pollution markers in C. gariepinus raised in the earthen and concrete ponds.


2020 ◽  
Vol 40 (04) ◽  
pp. 527-530
Author(s):  
Shiza Nawaz

Biofilms are complex, sessile microbial communities that are problematic in clinical settings due to their association with survival and pathogenicity of bacteria. The biofilm formation supporting conditions for zoonotic serovars of Salmonella and avian pathogenic E. coli (APEC) from poultry have not been well studied yet. Clinical isolates of zoonotic Salmonella and APEC from poultry were evaluated for biofilm formation in four media at 37°C and 40°C after incubation of 48 and 72 hrs. The biofilms formed in 96 well plates were visualized and quantified with a new module of Aklides system using fluorescence microscope coupled with automated VideoScan Technology. After 72 hrs, brain heart infusion at 40°C and Rappaport-Vassiliadis Soya broth at 37°C were found most suitable for APEC and Salmonella biofilm formations respectively. The new information will be useful for further biofilm associated studies particularly for evaluation of antibiofilm compounds and contribute in infection control


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 785
Author(s):  
Abubakar Siddique ◽  
Sara Azim ◽  
Amjad Ali ◽  
Saadia Andleeb ◽  
Aitezaz Ahsan ◽  
...  

Salmonellosis caused by non-typhoidal Salmonellaenterica from poultry products is a major public health concern worldwide. This study aimed at estimating the pathogenicity and antimicrobial resistance in S. enterica isolates obtained from poultry birds and their food products from different areas of Pakistan. In total, 95/370 (25.67%) samples from poultry droppings, organs, eggs, and meat were positive for Salmonella. The isolates were further identified through multiplex PCR (mPCR) as Salmonella Typhimurium 14 (14.7%), Salmonella Enteritidis 12 (12.6%), and other Salmonella spp. 69 (72.6%). The phenotypic virulence properties of 95 Salmonella isolates exhibited swimming and/or swarming motility 95 (100%), DNA degrading activity 93 (97.8%), hemolytic activity 92 (96.8%), lipase activity 87 (91.6%), and protease activity 86 (90.5%). The sopE virulence gene known for conferring zoonotic potential was detected in S. Typhimurium (92.8%), S. Enteritidis (100%), and other Salmonella spp. (69.5%). The isolates were further tested against 23 antibiotics (from 10 different antimicrobial groups) and were found resistant against fifteen to twenty-one antibiotics. All isolates showed multiple drug resistance and were found to exhibit a high multiple antibiotic-resistant (MAR) index of 0.62 to 0.91. The strong biofilm formation at 37 °C reflected their potential adherence to intestinal surfaces. There was a significant correlation between antimicrobial resistance and the biofilm formation potential of isolates. The resistance determinant genes found among the isolated strains were blaTEM-1 (59.3%), blaOxA-1 (18%), blaPSE-1 (9.5%), blaCMY-2 (43%), and ampC (8.3%). The detection of zoonotic potential MDR Salmonella in poultry and its associated food products carrying cephalosporin and quinolone resistance genes presents a major threat to the poultry industry and public health.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huiyi Song ◽  
Ni Lou ◽  
Jianjun Liu ◽  
Hong Xiang ◽  
Dong Shang

Abstract Background Escherichia coli (E. coli) is the principal pathogen that causes biofilm formation. Biofilms are associated with infectious diseases and antibiotic resistance. This study employed proteomic analysis to identify differentially expressed proteins after coculture of E. coli with Lactobacillus rhamnosus GG (LGG) microcapsules. Methods To explore the relevant protein abundance changes after E. coli and LGG coculture, label-free quantitative proteomic analysis and qRT-PCR were applied to E. coli and LGG microcapsule groups before and after coculture, respectively. Results The proteomic analysis characterised a total of 1655 proteins in E. coli K12MG1655 and 1431 proteins in the LGG. After coculture treatment, there were 262 differentially expressed proteins in E. coli and 291 in LGG. Gene ontology analysis showed that the differentially expressed proteins were mainly related to cellular metabolism, the stress response, transcription and the cell membrane. A protein interaction network and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis indicated that the differentiated proteins were mainly involved in the protein ubiquitination pathway and mitochondrial dysfunction. Conclusions These findings indicated that LGG microcapsules may inhibit E. coli biofilm formation by disrupting metabolic processes, particularly in relation to energy metabolism and stimulus responses, both of which are critical for the growth of LGG. Together, these findings increase our understanding of the interactions between bacteria under coculture conditions.


2021 ◽  
Vol 14 (5) ◽  
pp. 414
Author(s):  
Neda Aničić ◽  
Uroš Gašić ◽  
Feng Lu ◽  
Ana Ćirić ◽  
Marija Ivanov ◽  
...  

Two Balkan Peninsula endemics, Nepeta rtanjensis and N. argolica subsp. argolica, both characterized by specialized metabolite profiles predominated by iridoids and phenolics, are differentiated according to the stereochemistry of major iridoid aglycone nepetalactone (NL). For the first time, the present study provides a comparative analysis of antimicrobial and immunomodulating activities of the two Nepeta species and their major iridoids isolated from natural sources—cis,trans-NL, trans,cis-NL, and 1,5,9-epideoxyloganic acid (1,5,9-eDLA), as well as of phenolic acid rosmarinic acid (RA). Methanol extracts and pure iridoids displayed excellent antimicrobial activity against eight strains of bacteria and seven strains of fungi. They were especially potent against food-borne pathogens such as L. monocytogenes, E. coli, S. aureus, Penicillium sp., and Aspergillus sp. Targeted iridoids were efficient agents in preventing biofilm formation of resistant P. aeruginosa strain, and they displayed additive antimicrobial interaction. Iridoids are, to a great extent, responsible for the prominent antimicrobial activities of the two Nepeta species, although are probably minor contributors to the moderate immunomodulatory effects. The analyzed iridoids and RA, individually or in mixtures, have the potential to be used in the pharmaceutical industry as potent antimicrobials, and in the food industry to increase the shelf life and safety of food products.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniel Anokwah ◽  
Evelyn Asante-Kwatia ◽  
Abraham Y. Mensah ◽  
Cynthia Amaning Danquah ◽  
Benjamin K. Harley ◽  
...  

Abstract Background Antimicrobial resistance is a global health challenge. The involvement of bacterial biofilms and efflux pumps in the development of multidrug resistance (MDR) is well established. Medicinal plants have been proposed as alternatives for combating MDR focusing on their bioactive constituents with resistance modulatory activities. This study was aimed at investigating the stem bark of Aidia genipiflora for bioactive constituents with anti-biofilm, efflux pump inhibition and resistance modulatory activities. Method The crude methanol extract was purified by column chromatography and isolated compounds characterized by mass and nuclear magnetic resonance spectrometry. Antibacterial activity was determined by the High-throughput spot culture growth inhibition and the broth micro-dilution assay. The ethidium bromide accumulation assay was used to determine efflux pump inhibition property. Biofilm inhibition was determined in a microplate crystal violet retention assay. Results Purification of the ethyl acetate fraction led to the isolation of oleanonic acid (1), 4-hydroxy cinnamic acid docosyl ester (2), β-stigmasterol/β-sitosterol (mixture 3a/b) and D-mannitol (4). The minimum inhibitory concentrations (MICs) ranged from 250 to > 500 μg/mL for extracts and fractions and from 15 to 250 μg/mL for compounds. In the presence of sub-inhibitory concentrations of the compounds, the MIC of amoxicillin against E. coli (20 μg/mL) and P. aeruginosa (320 μg/mL) was reduced by 32 and 10 folds respectively. The whole extract demonstrated anti-biofilm formation and efflux pump inhibition in E. coli, S. aureus and P. aeruginosa. The sterol mixture (3a/b) at concentration of 100 μg/mL caused the highest inhibition (73%) of biofilm formation in S. aureus. Oleanonic acid (1) demonstrated remarkable efflux pump inhibition at MIC of 7.8 μg/mL in E. coli better than the standard drugs verapamil and chlorpromazine. Conclusion This study confirms the prospects of A. genipiflora as a source of new antibacterial agents and adjuvants that could interact with some resistance mechanisms in bacteria to enhance the activity of hitherto ineffective antibiotics. “A small portion of the study has been presented in a conference in the form of poster”.


2012 ◽  
Vol 75 (6) ◽  
pp. 1148-1152 ◽  
Author(s):  
ELLEN J. VAN LOO ◽  
D. BABU ◽  
PHILIP G. CRANDALL ◽  
STEVEN C. RICKE

Liquid smoke extracts have traditionally been used as flavoring agents, are known to possess antioxidant properties, and serve as natural alternatives to conventional antimicrobials. The antimicrobial efficacies of commercial liquid smoke samples may vary depending on their source and composition and the methods used to extract and concentrate the smoke. We investigated the MICs of eight commercial liquid smoke samples against Salmonella Enteritidis, Staphylococcus aureus, and Escherichia coli. The commercial liquid smoke samples purchased were supplied by the manufacturer as water-based or concentrated extracts of smoke from different wood sources. The MICs of the commercial smokes to inhibit the growth of foodborne pathogens ranged from 0.5 to 6.0% for E. coli, 0.5 to 8.0% for Salmonella, and 0.38 to 6% for S. aureus. The MIC for each liquid smoke sample was similar in its effect on both E. coli and Salmonella. Solvent-extracted antimicrobials prepared using pecan shells displayed significant differences between their inhibitory concentrations depending on the type of solvent used for extraction. The results indicated that the liquid smoke samples tested in this study could serve as effective natural antimicrobials and that their inhibitory effects depended more on the solvents used for extraction than the wood source.


2016 ◽  
Vol 18 (8) ◽  
pp. 2565-2574 ◽  
Author(s):  
Jonas S. Madsen ◽  
Henriette L. Røder ◽  
Jakob Russel ◽  
Helle Sørensen ◽  
Mette Burmølle ◽  
...  

2021 ◽  
Author(s):  
Anastasia Arturovna Semenova ◽  
◽  
Yulia Konstantinovna Yushina ◽  
Maria Alexandrovna Grudistova ◽  
Elena Viktorovna Zaiko ◽  
...  

The article discusses the results of a study of the microbial diversity of objects in the production environment of two meat processing enterprises, including antibiotic resistance, isolated strains of pathogenic microorganisms and their ability to biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document