scholarly journals Carbides and Carbon Control in MC – Reinforced Superalloys

Author(s):  
Patrice Berthod

Polycrystalline alloys based on cobalt and elaborated by classical foundry are known since the middle of the last century. They are currently still used, notably for geometrically complex components working at high temperature. Beyond the oldest ones reinforced by chromium carbides, new principles of carbides–strengthened cobalt–based alloys have recently appeared. MC–type refractory mono–carbides allow maintaining the melting start temperature at a high level when they are present as single carbide phase. Their high temperature stabilities and script–like morphologies also favor high mechanical properties at elevated temperatures. Optimized MC–carbides fractions can be obtained with carbon contents, close to 0.4 wt.%C, for achieving significant strengthening without threat for the low and high temperature toughness. Controlling the carbon content is thus of prior importance. Unfortunately the most common metallographic apparatus used for measuring the chemical composition of alloys – the Energy Dispersion Spectrometers (EDS) attached to Scanning Electrons Microscopes (SEM) – are not able to analyze, with sufficient accuracy, carbon with so low contents. A simple indirect method using both EDS and SEM is proposed here to get some information about the carbon content in several MC–reinforced Co–based superalloys.

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1330
Author(s):  
Muhammad Farzik Ijaz ◽  
Mahmoud S. Soliman ◽  
Ahmed S. Alasmari ◽  
Adel T. Abbas ◽  
Faraz Hussain Hashmi

Unfolding the structure–property linkages between the mechanical performance and microstructural characteristics could be an attractive pathway to develop new single- and polycrystalline Al-based alloys to achieve ambitious high strength and fuel economy goals. A lot of polycrystalline as-cast Al-Cu-Mg-Ag alloy systems fabricated by conventional casting techniques have been reported to date. However, no one has reported a comparison of mechanical and microstructural properties that simultaneously incorporates the effects of both alloy chemistry and mechanical testing environments for the as-cast Al-Cu-Mg-Ag alloy systems. This preliminary prospective paper presents the examined experimental results of two alloys (denoted Alloy 1 and Alloy 2), with constant Cu content of ~3 wt.%, Cu/Mg ratios of 12.60 and 6.30, and a constant Ag of 0.65 wt.%, and correlates the synergistic comparison of mechanical properties at room and elevated temperatures. According to experimental results, the effect of the precipitation state and the mechanical properties showed strong dependence on the composition and testing environments for peak-aged, heat-treated specimens. In the room-temperature mechanical testing scenario, the higher Cu/Mg ratio alloy with Mg content of 0.23 wt.% (Alloy 1) possessed higher ultimate tensile strength when compared to the low Cu/Mg ratio with Mg content of 0.47 wt.% (Alloy 2). From phase constitution analysis, it is inferred that the increase in strength for Alloy 1 under room-temperature tensile testing is mainly ascribable to the small grain size and fine and uniform distribution of θ precipitates, which provided a barrier to slip by deaccelerating the dislocation movement in the room-temperature environment. Meanwhile, Alloy 2 showed significantly less degradation of mechanical strength under high-temperature tensile testing. Indeed, in most cases, low Cu/Mg ratios had a strong influence on the copious precipitation of thermally stable omega phase, which is known to be a major strengthening phase at elevated temperatures in the Al-Cu-Mg-Ag alloying system. Consequently, it is rationally suggested that in the high-temperature testing scenario, the improvement in mechanical and/or thermal stability in the case of the Alloy 2 specimen was mainly due to its compositional design.


2007 ◽  
Vol 280-283 ◽  
pp. 1869-1872
Author(s):  
Cui Wei Li ◽  
Chang An Wang ◽  
Yong Huang

Laminated ceramics with high mechanical properties were fabricated in the Si3N4/BN system. The mechanical properties at elevated temperatures were tested, and the oxidation behavior during tested procedure was studied at the same time. The flexure strength of the Si3N4/BN laminated ceramics changed a little below 1000°C. The displacement-load curves appeared non-linear characteristic even at high temperature. During testing procedure at high temperature, oxidation behavior of silicon nitride and silicon carbide happened, and no oxidation product of boron nitride was found. The silicon nitride layers were oxidized to form a protective silicate scale, which prevented oxidation of the boron nitride interlayers. The stability of boron nitride was beneficial to the boron nitride interlayer to partition the silicon nitride matrix layers at high temperature.


Author(s):  
Nao Otaki ◽  
Tomoaki Hamaguchi ◽  
Takahiro Osuki ◽  
Yuhei Suzuki ◽  
Masaki Ueyama ◽  
...  

Abstract In petroleum refinery plants, materials with high sensitization resistance are required. 347AP has particularly been developed for such applications and shows good sensitization resistance owing to its low C content. However, further improvement in high temperature strength is required for high temperature operations in complex refineries, such as delayed cokers. Recently, a new austenitic stainless steel (low C 18Cr-11Ni-3Cu-Mo-Nb-B-N, UNS No. S34752) with high sensitization resistance and high strength at elevated temperatures has been developed. In this study, the mechanical properties and microstructures of several aged specimens will be reported. By conducting several aging heat treatments in the range of 550–750 °C for 300–10,000 h on the developed steel, it was revealed that there were only few coarse precipitates that assumed sigma phase even after aging at 750 °C for 10,000 h. This indicates that the newly developed steel has superior phase stability. The developed steel drastically increased its Vickers hardness by short-term aging treatments. Through transmission electron microscopy observations, the fine precipitates of Cu-rich phase were observed dispersedly in the ruptured specimen. Therefore, the increase in Vickers hardness in short-term aging is possibly owing to the dispersed precipitation of Cu-rich phase. There was further increase in Vickers hardness owing to Z phase precipitation; however, the increment was smaller than that caused by Cu-rich phase. The newly developed alloy demonstrated excellent creep rupture strength even in the long-term tests of approximately 30,000 h, which is attributed to these precipitates.


1988 ◽  
Vol 15 (5) ◽  
pp. 776-783
Author(s):  
H. S. Wilson

Two similar mixes were made with cement contents of about 350 kg/m3 and a water–cement ratio of 0.50. The concrete specimens, moist cured for 7 days, were cured in air for 28 and 120 days, respectively, prior to heating. The exposure temperatures were 75, 150, 300, and 450 °C. The periods of exposure at each temperature were 2, 30, and 120 days.The compressive strengths, before heating, of the specimens cured for 35 and 120 days were 41.0 and 46.2 MPa, respectively, and the flexural strengths were 4.9 and 5.8 MPa. Compared with those strengths, the strengths of the specimens heated for 30 days or more increased at 75 °C but decreased at higher temperatures. The losses increased with increase in temperature, reaching about 30% at 450 °C.The flexural strength of the concrete cured in air for 28 days was more adversely affected than was the compressive strength. The flexural and compressive strengths of the concrete cured in air for 120 days were affected to about the same degree. The longer curing period had little effect on the relative losses in compressive strength, but the longer curing period reduced the loss in flexural strength. In most applications, the loss in strength could be compensated by proportioning the mix to overdesign for strength. Key words: high-density concrete, ilmenite, aggregates, high temperature, mechanical properties, nondestructive tests.


2018 ◽  
Vol 9 (3) ◽  
pp. 203-221 ◽  
Author(s):  
Muhammad Masood Rafi ◽  
Abdul Basit Dahar ◽  
Tariq Aziz

Purpose The purpose of this paper is to present the results of experimental testing of steel rebars at elevated temperatures. Three types of bars available in the local market in Pakistan were used. These data are not available in Pakistan. Design/methodology/approach Three types of bars were used, which included cold-twisted ribbed (CTR), hot-rolled deformed (HRD) and thermo-mechanically treated (TMT) bars. The diameter of the bar of each type was 16 mm. The bars were heated in an electrical furnace at temperatures which were varied from 100°C to 900°C in increment of 100°C. Bars of each type were also tested at ambient temperature as control specimens. The change of strength, strain and modulus of elasticity of the bars at high temperatures were determined. Findings The mechanical properties of the bars were nearly unaffected by the temperatures up to 200°C. CTR bars did not show yield plateau and strain hardening both at ambient and high temperatures. The high temperature yield strength and elastic modulus for all the three types of bars were similar at all temperatures. The yield plateau of both the HRD and TMT bars disappeared at temperatures greater than 300°C. The ultimate strength at high temperature of the HRD and TMT bars was also similar. The behaviours of the HRD and TMT bars changed to brittle beyond 400°C as compared to their behaviours at ambient temperature. The CTR bars exhibited ductile characteristics at failure at all the exposure temperatures relative to their behaviour at ambient temperature. Research limitations/implications The parameters of the paper included the rebar type and heating temperature and the effects of temperature on strength and stiffness properties of the steel bars. Practical implications Building fire incidents have increased in Pakistan. As reinforced concrete (RC) buildings exist in the country in significant numbers, the data related to elevated temperature properties of steel is required. These data are not available in Pakistan presently. The presented paper aims at providing this information for the design engineers to enable them to assess and increase fire resistance of RC structural members. Originality/value The presented paper is unique in its nature in that there is no published contribution to date, to the best of authors’ knowledge, which has been carried out to assess the temperature-dependent mechanical properties of steel reinforcing bars available in Pakistan.


2017 ◽  
Vol 51 (30) ◽  
pp. 4157-4164 ◽  
Author(s):  
BA Bulgakov ◽  
AV Sulimov ◽  
AV Babkin ◽  
IA Timoshkin ◽  
AV Solopchenko ◽  
...  

High-temperature carbon fiber-reinforced plastics based on phthalonitrile resins are obtained for the first time by vacuum infusion process. For this purpose, formulations based on low-melting bis(3-(3,4-dicyanophenoxy)phenyl) phenyl phosphate monomer in combination with 1,3-bis(3,4-dicyanophenoxy)benzene and 4-[3-(prop-2-yn-1-yloxy)phenoxy]benzene-1,2-dicarbonitrile were developed. Resin viscosities η ≤ 600 mPa·s were suitable for VIP and at the same time the thermal and mechanical properties of the cured matrices were in high level featured to phthalonitriles (HDT ≥ 420℃, E ≥ 5.1 GPa). CFRP samples were manufactured by vacuum infusion process with carbon fabric and demonstrated thermal stability over 400℃ and a change of mechanical properties by less than 10% at 300℃. Present results sufficiently extend the application field of phthalonitriles as matrices for complex-shape high temperature composite parts in aerospace or high-temperature composite tooling for PEEK-like thermoplastics processing.


2021 ◽  
Vol 12 (1) ◽  
pp. 30
Author(s):  
Mohamed Amin ◽  
Khaled Abu el-hassan

The effects of the types of fibers on mechanical properties of normal and high strength concrete under high temperature, up to 700 °C, was investigated. Three different- type fiber; "Steel Fiber (SF), Glass Fiber (GF) and Polypropylene Fiber (PPF)" are added into the concretes in five different ratios (0, 0.50, 1.00, 1.50 and 2.0%)of the volume under the following temperatures; 22, 100, 400 and 700°C. The results indicate that all the different types of fibers researched contribute to both the compressive and flexural strengths of concrete under high temperature, however, it is also found that this contribution decreases with an increase in temperature. The flexural strengths and compressive strengths for NSC and HSC mixes at 28 days under high temperature decreases as the temperature increases especially up to 400°C. Also, the best compressive and flexural strengths performance under high temperature was also those of SF. The compressive strength of the concrete incorporating SF was reduced under high temperature only, while the mixes containing PPF and GF were reduced under high temperature or with fiber addition. The optimum fiber addition ratios of the mixes containing PPF and GF are between 0.5-1.0 percent by volume. And for SF, it is 1.5% by the volume.


Author(s):  
Iurii Bogomol ◽  
Petro Loboda

The processing techniques, microstructures, and mechanical properties of directionally solidified eutectic ceramics are reviewed. It is considered the main methods for preparing of eutectic ceramics and the relationships between thermal gradient, growth rate, and microstructure parameters. Some principles of coupled eutectic growth, main types of eutectic microstructure and the relationship between the eutectic microstructure and the mechanical properties of directionally solidified eutectics at ambient and high temperatures are briefly described. The mechanical behavior and main toughening mechanisms of these materials in a wide temperature range are discussed. It is shown that the strength at high temperatures mainly depends on the plasticity of the phase components. By analyzing the dislocation structure, the occurrence of strain hardening in single crystalline phases during high-temperature deformation is revealed. The creep resistance of eutectic composites is superior to that of the sintered samples due to the absence of glassy phases at the interfaces, and the strain has to be accommodated by plastic deformation within the domains rather than by interfacial sliding. The microstructural and chemical stability of the directionally solidified eutectic ceramics at high temperatures are discussed. The aligned eutectic microstructures show limited phase coarsening up to the eutectic point and excellent chemical resistance. Directionally solidified eutectics, especially oxides, revealed an excellent oxidation resistance at elevated temperatures. It is shown sufficient potential of these materials for high-temperature applications.


2016 ◽  
Vol 879 ◽  
pp. 380-385 ◽  
Author(s):  
Marco Colombo ◽  
Elisabetta Gariboldi ◽  
Paola Bassani ◽  
Mihaela Albu ◽  
Ferdinand Hofer

The mechanical properties of Al alloys are strongly affected by their microstructure: the size and shape of precipitates, their homogeneous distribution and their coherency with the matrix are of primary importance for an effective strengthening of the alloys at room and elevated temperatures. Physically-based models are powerful tools to predict the influence of the mentioned parameters on the mechanical properties of the alloy after age hardening, and also to predict the effect of high temperature service conditions on microstructure evolution. Scope of this work is to model the dimensional kinetic evolution of plate shaped precipitates of an Al-based alloy during aging and after different overaging times at elevated temperature, and use these results to estimate the alloy yield strength. The alloy strengthening response is due to three terms, linearly summed: the intrinsic strength of Aluminum, the contribution from solute in solid solution and the contribution arising from precipitates. The consistency of the model is verified with experimental data obtained from a 2014 Al alloy.


Sign in / Sign up

Export Citation Format

Share Document