scholarly journals Priming Induction in Neighbouring Plants of Gossypium hirsutum under Salt Stress

2019 ◽  
pp. 1-9
Author(s):  
Khuram Tanveer ◽  
Muhammad Haseeb Tung ◽  
Aneeq-ur-Rehman . ◽  
Usman Ahmad ◽  
Mubashar Hussain

Plants are subjected to various types of environmental stresses throughout their lifecycle. It has been found that plants are able to communicate with the neighbouring plants under stress conditions through volatile organic compounds. These volatiles act as signals for the neighbouring plants thus preparing them for the upcoming stress, a phenomenon known as priming. So, the present study explores the effects of salt stress on cotton plants and the resultant induction of priming in the nearby plants. For this purpose, salt tolerant cotton (Gossypium hirsutum) variety was used. Two concentration levels, 100 mM, and 150 mM of salt were used to study the impacts of the stress. The experiment was divided into two steps for each treatment. In the first step, a set of plants (emitters) was given salt stress. The second set of plants (receivers) was placed adjacent to the stressed plants (emitters), while the third set of plants was placed separately as a control for both the treatments. Various physiological and morphological parameters were measured at the beginning and the end of the first step. In the second step, the receiver plants now termed as "primed" were given the same levels of stress while a new set of non-primed plants was placed near the primed plants. These non-primed plants were now treated with 100mM and 150mM of NaCl respectively and the results were compared. The results show that plants were able to get signals from neighbouring stressed plants. Plants responded by altering morphology and physiology to prepare themselves for future stress conditions.

2022 ◽  
Author(s):  
Rachel Predeepa ◽  
Ranjith Kumar ◽  
George C. Abraham ◽  
T. S. Subramanian

Abstract Background: Cotton is a major cash crop in the global and, in particular, the Indian markets, playing an important economic role in the textile and oil industries. The cotton plant is one of the highly bred plants that is highly sensitive to salt stress. As cotton is a non-food crop, the availability of non-saline terrain and water for the cultivation of cotton plants is only next to other food crops, thereby posing a need to better understand the salt tolerance of this plant. Gossypium hirsutum L. cultivars MCU 5, LRA 5166, and SVPR 2 were selected based on exomorphic traits like staple length and cropping season so that the genotypic responses to salt stress and salt shock can be compared for interpreting the effects of salinity on in vitro germination. Thus, this study aims to establish genotypic dependence on salinity tolerance. Results: The results affirmed genotypic variation in salinity tolerance, with MCU 5 tolerating salt stress better than LRA 5166 and SVPR 2 in all the observed stages of growth of the plant and the parameters measured. Further salt-tolerant cotton varieties were observed to be long-staple length varieties; staple length is the fiber character of the cotton lint. Moreover, salt tolerance in the vegetative growth stage of cotton plants is not independent of the germination stage of the plant.Conclusion: Nevertheless, the correlation of genotypic dependence to morphological characteristics, in particular, staple length (and cropping season), is of agronomic and commercial significance. Further research by screening and investigating a greater number of cultivars using biochemical and molecular techniques will provide a better understanding of this observed phenotypical relationship to the genotypes of cotton cultivars under salt stress.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 226 ◽  
Author(s):  
Richard Odongo Magwanga ◽  
Pu Lu ◽  
Joy Nyangasi Kirungu ◽  
Qi Dong ◽  
Xiaoyan Cai ◽  
...  

We identified 672, 374, and 379 CYPs proteins encoded by the CYPs genes in Gossypium hirsutum, Gossypium raimondii, and Gossypium arboreum, respectively. The genes were found to be distributed in all 26 chromosomes of the tetraploid cotton, with chrA05, chrA12, and their homeolog chromosomes harboring the highest number of genes. The physiochemical properties of the proteins encoded by the CYP450 genes varied in terms of their protein lengths, molecular weight, isoelectric points (pI), and even grand hydropathy values (GRAVY). However, over 99% of the cotton proteins had GRAVY values below 0, which indicated that the majority of the proteins encoded by the CYP450 genes were hydrophilic in nature, a common property of proteins encoded by stress-responsive genes. Moreover, through the RNA interference (RNAi) technique, the expression levels of Gh_D07G1197 and Gh_A13G2057 were suppressed, and the silenced plants showed a higher concentration of hydrogen peroxide (H2O2) with a significant reduction in the concentration levels of glutathione (GSH), ascorbate peroxidase (APX), and proline compared to the wild types under drought and salt stress conditions. Furthermore, the stress-responsive genes 1-Pyrroline–5-Carboxylate Synthetase (GhP5CS), superoxide dismutase (GhSOD), and myeloblastosis (GhMYB) were downregulated in VIGS plants, but showed upregulation in the leaf tissues of the wild types under drought and salt stress conditions. In addition, CYP450-silenced cotton plants exhibited a high level of oxidative injury due to high levels of oxidant enzymes, in addition to negative effects on CMS, ELWL, RLWC, and chlorophyll content The results provide the basic foundation for future exploration of the proteins encoded by the CYP450 genes in order to understand the physiological and biochemical mechanisms in enhancing drought and salt stress tolerance in plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pu-Sheng Li ◽  
Wei-Liang Kong ◽  
Xiao-Qin Wu ◽  
Yu Zhang

Salt stress is one of the major abiotic stresses that affects plant growth and development. The use of plant growth-promoting rhizobacteria to mitigcate salt stress damage in plants is an important way to promote crop growth under salt stress conditions. Rahnella aquatilis JZ-GX1 is a plant growth-promoting rhizobacterial strain, but it is not clear whether it can improve the salt tolerance of plants, and in particular, the role of volatile substances in plant salt tolerance is unknown. We investigated the effects of volatile organic compounds (VOCs) from JZ-GX1 on the growth performance, osmotic substances, ionic balance and antioxidant enzyme activities of acacia seedlings treated with 0 and 100mm NaCl and explored the VOCs associated with the JZ-GX1 strain. The results showed that compared to untreated seedlings, seedlings exposed to plant growth-promoting rhizobacterium JZ-GX1 via direct contact with plant roots under salt stress conditions exhibited increases in fresh weight, lateral root number and primary root length equal to approximately 155.1, 95.4, and 71.3%, respectively. Robinia pseudoacacia seedlings exposed to VOCs of the JZ-GX1 strain showed increases in biomass, soil and plant analyser development values and lateral root numbers equal to 132.1, 101.6, and 166.7%, respectively. Additionally, decreases in malondialdehyde, superoxide anion (O2−) and hydrogen peroxide (H2O2) contents and increases in proline contents and superoxide dismutase, peroxidase and glutathione reductase activities were observed in acacia leaves. Importantly, the sodium-potassium ratios in the roots, stems, and leaves of acacia exposed to VOCs of the JZ-GX1 strain were significantly lower than those in the control samples, and this change in ion homeostasis was consistent with the upregulated expression of the (Na+, K+)/H+ reverse cotransporter RpNHX1 in plant roots. Through GC-MS and creatine chromatography, we also found that 2,3-butanediol in the volatile gases of the JZ-GX1 strain was one of the important signaling substances for improving the salt tolerance of plants. The results showed that R. aquatilis JZ-GX1 can promote the growth and yield of R. pseudoacacia under normal and salt stress conditions. JZ-GX1 VOCs have good potential as protectants for improving the salt tolerance of plants, opening a window of opportunity for their application in salinized soils.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Delong Wang ◽  
Xuke Lu ◽  
Xiugui Chen ◽  
Shuai Wang ◽  
Junjuan Wang ◽  
...  

Abstract Background Cotton (Gossypium hirsutum) is considered a fairly salt tolerant crop however, salinity can still cause significant economic losses by affecting the yield and deteriorating the fiber quality. We studied a salt-tolerant upland cotton cultivar under temporal salt stress to unfold the salt tolerance molecular mechanisms. Biochemical response to salt stress (400 mM) was measured at 0 h, 3 h, 12 h, 24 h and 48 h post stress intervals and single-molecule long-read sequencing technology from Pacific Biosciences (PacBio) combined with the unique molecular identifiers approach was used to identify differentially expressed genes (DEG). Results Antioxidant enzymes including, catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) were found significantly induced under temporal salt stress, suggesting that reactive oxygen species scavenging antioxidant machinery is an essential component of salt tolerance mechanism in cotton. We identified a wealth of novel transcripts based on the PacBio long reads sequencing approach. Prolonged salt stress duration induces high number of DEGs. Significant numbers of DEGs were found under key terms related to stress pathways such as “response to oxidative stress”, “response to salt stress”, “response to water deprivation”, “cation transport”, “metal ion transport”, “superoxide dismutase”, and “reductase”. Key DEGs related to hormone (abscisic acid, ethylene and jasmonic acid) biosynthesis, ion homeostasis (CBL-interacting serine/threonine-protein kinase genes, calcium-binding proteins, potassium transporter genes, potassium channel genes, sodium/hydrogen exchanger or antiporter genes), antioxidant activity (POD, SOD, CAT, glutathione reductase), transcription factors (myeloblastosis, WRKY, Apetala 2) and cell wall modification were found highly active in response to salt stress in cotton. Expression fold change of these DEGs showed both positive and negative responses, highlighting the complex nature of salt stress tolerance mechanisms in cotton. Conclusion Collectively, this study provides a good insight into the regulatory mechanism under salt stress in cotton and lays the foundation for further improvement of salt stress tolerance.


2019 ◽  
Vol 20 (2) ◽  
pp. 65
Author(s):  
Ivana Koleška ◽  
Dino Hasanagić ◽  
Rodoljub Oljača ◽  
Vida Todorović ◽  
Borut Bosančić ◽  
...  

Two commercial tomato cultivars were used to determine whether grafting could prevent decrease of Ca2+ concentration under salt stress conditions. The cultivars Buran F1 and Berberana F1 were grafted onto rootstock "Maxifort" and grown under three levels of the elevated soil salinity (S1 EC 3.80 dS m-1, S2 6.95 dS m-1 and S3 9.12 dS m-1). Ca2+ concentration of non-grafted plants of both examined hybrids was lower at all salinity levels in comparison to the control. In the fruits of grafted plants salt stress significantly decreased Ca2+ concentration only at the third salinity level (EC 9.12 dS m-1). The possibility of grafting tomato plants to improve influx of Ca2+ under salt stress conditions is discussed.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 56
Author(s):  
Ibrahim Al-Ashkar ◽  
Walid Ben Romdhane ◽  
Rania A. El-Said ◽  
Abdelhalim Ghazy ◽  
Kotb Attia ◽  
...  

Salinity majorly hinders horizontal and vertical expansion in worldwide wheat production. Productivity can be enhanced using salt-tolerant wheat genotypes. However, the assessment of salt tolerance potential in bread wheat doubled haploid lines (DHL) through agro-physiological traits and stress-related gene expression analysis could potentially minimize the cost of breeding programs and be a powerful way for the selection of the most salt-tolerant genotype. We used an extensive set of agro-physiologic parameters and salt-stress-related gene expressions. Multivariate analysis was used to detect phenotypic and genetic variations of wheat genotypes more closely under salinity stress, and we analyzed how these strategies effectively balance each other. Four doubled haploid lines (DHLs) and the check cultivar (Sakha93) were evaluated in two salinity levels (without and 150 mM NaCl) until harvest. The five genotypes showed reduced growth under 150 mM NaCl; however, the check cultivar (Sakha93) died at the beginning of the flowering stage. Salt stress induced reduction traits, except the canopy temperature and initial electrical conductivity, which was found in each of the five genotypes, with the greatest decline occurring in the check cultivar (Sakha-93) and the least decline in DHL2. The genotypes DHL21 and DHL5 exhibited increased expression rate of salt-stress-related genes (TaNHX1, TaHKT1, and TaCAT1) compared with DHL2 and Sakha93 under salt stress conditions. Principle component analysis detection of the first two components explains 70.78% of the overall variation of all traits (28 out of 32 traits). A multiple linear regression model and path coefficient analysis showed a coefficient of determination (R2) of 0.93. The models identified two interpretive variables, number of spikelets, and/or number of kernels, which can be unbiased traits for assessing wheat DHLs under salinity stress conditions, given their contribution and direct impact on the grain yield.


2021 ◽  
Vol 26 (3) ◽  
pp. 151
Author(s):  
Galang Rizki Ramadhan ◽  
Sholeh Avivi ◽  
Bambang Sugiharto ◽  
Wahyu Indra Duwi Fanata

Plants activate the unfolded protein response as part of cellular adaptation, thereby maintaining the endoplasmic reticulum homeostasis during external stresses exposure. In this study, we examined the relationship between the degree of salt tolerance and unfolded protein response-related gene expression in India salt-tolerant Pokkali and INPARI 35 varieties compared to the Indica salt-sensitive counterpart IR64 and INPARI 4 varieties.  Our result showed that the salt tolerance of Pokkali and INPARI 35 had been confirmed by their higher survival rate, higher chlorophyll content, lower electrolyte leakage, and lower H2O2 and malondialdehyde content under salt stress conditions. Furthermore, the expression of unfolded protein response genes was highest in INPARI 35, whereas IR64 and INPARI 4 exhibited low gene induction during endoplasmic reticulum stress conditions. Among the four examined varieties the salt tolerant Pokkali surprisingly showed the lowest induction of all examined unfolded protein response-related genes. These results indicated the possibility that unfolded protein response supports the rice plant for adapting to the saline environment.


Sign in / Sign up

Export Citation Format

Share Document