scholarly journals Neoplasias in Fish: Review of the Last 20 Years. A Look from the Pathology

Author(s):  
Luis Alberto Romano ◽  
Virgínia Fonseca Pedrosa

In fish there is an innumerable variety of neoplasias that arise essentially from all cell types. Neolasia here, we will focus on the neoplasias that appear spontaneously in these animals and will not cover the experimentally induced neoplasias and/or the animal models of neoplasias. As for diagnosis, in general, specialists in aquatic organism pathology are not so familiar with the diagnosis of neoplasias. Infectious pathology, as opposed to non-infectious pathology, is the predominant condition in this area and, of course, these are of greater importance because some infectious diseases generate great economic losses, while neoplasias are isolated pathologies, with some exceptions. In the last 20 years, 10 neoplasias in different species have been diagnosed in our laboratory, and we reported their characteristics in this paper. We also made a detailed bibliography review and observed how 90 neoplasias among 56 species of teleosteal fish were reported. Neoplasias in fish, unlike other diseases, do not generate great losses to aquaculture. However, the true value of neoplastic pathology compared is to better understand the histiogenesis and biological behavior of neoplasias in mammals and humans. Carcinogenesis is generally complex and in most neoplasias in both mammals and fish, the origin is unknown, and it seems that there are many factors that contribute to the onset and growth of neoplasias.

2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


RMD Open ◽  
2018 ◽  
Vol 4 (2) ◽  
pp. e000744 ◽  
Author(s):  
Kerstin Klein

The reading of acetylation marks on histones by bromodomain (BRD) proteins is a key event in transcriptional activation. Small molecule inhibitors targeting bromodomain and extra-terminal (BET) proteins compete for binding to acetylated histones. They have strong anti-inflammatory properties and exhibit encouraging effects in different cell types in vitro and in animal models resembling rheumatic diseases in vivo. Furthermore, recent studies that focus on BRD proteins beyond BET family members are discussed.


ILAR Journal ◽  
2018 ◽  
Vol 59 (3) ◽  
pp. 209-210
Author(s):  
Gregers Jungersen ◽  
Jorge Piedrahita

Abstract Valid interpretation of preclinical animal models in immunology-related clinical challenges is important to solve outstanding clinical needs. Given the overall complexity of the immune system and both species- and tissue-specific immune peculiarities, the selection and design of appropriate immune-relevant animal models is, however, not following a straightforward path. The topics in this issue of the ILAR Journal provide assessments of immune-relevant animal models used in oncology, hematopoietic-, CAR-T cell- and xenotransplantation, adjuvants and infectious diseases, and immune privileged inflammation that are providing key insights into unmet human clinical needs.


2020 ◽  
Vol 134 (8) ◽  
pp. 1001-1025 ◽  
Author(s):  
Sonya Frazier ◽  
Martin W. McBride ◽  
Helen Mulvana ◽  
Delyth Graham

Abstract Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.


2019 ◽  
Author(s):  
Douglas. K. Brubaker ◽  
Manu. P. Kumar ◽  
Paige. N. Vega ◽  
Austin. N. Southard-Smith ◽  
Alan. J. Simmons ◽  
...  

AbstractAnti-TNF therapy resistance is a major clinical challenge in Crohn’s Disease (CD), partly due to insufficient understanding of disease-site, protein-level mechanisms of CD and anti-TNF treatment resistance. Although some proteomics data from CD mouse models exists, data type and phenotype discrepancies contribute to confounding attempts to translate between preclinical animal models of disease and human clinical cohorts. To meet this important challenge, we develop and demonstrate here an approach called Translatable Components Regression (TransComp-R) to overcome inter-species and trans-omic discrepancies between CD mouse models and human subjects. TransComp-R combines CD mouse model proteomic data with patient pre-treatment transcriptomic data to identify molecular features discernable in the mouse data predictive of patient response to anti-TNF therapy. Interrogating the TransComp-R models predominantly revealed upregulated integrin pathway signaling via collagen-binding integrin ITGA1 in anti-TNF resistant colonic CD (cCD) patients. Toward validation, we performed single-cell RNA sequencing on biopsies from a cCD patient and analyzed publicly available immune cell proteomics data to characterize the immune and intestinal cell types contributing to anti-TNF resistance. We found that ITGA1 is indeed expressed in colonic T-cell populations and that interactions between collagen-binding integrins on T-cells and colonic cell types expressing secreted collagens are associated with anti-TNF therapy resistance. Biologically, TransComp-R linked previously disparate observations about collagen and ITGA1 signaling to a potential therapeutic avenue for overcoming anti-TNF therapy resistance in cCD. Methodologically, TransComp-R provides a flexible, generalizable framework for addressing inter-species, inter-omic, and inter-phenotypic discrepancies between animal models and patients to deliver translationally relevant biological insights.One Sentence SummaryBrubaker et al. implicate dysregulated collagen-binding integrin signaling in resistance to anti-TNF therapy in Crohn’s Disease by developing a mouse-proteomic to human-transcriptomic translation model and confirm the associated inter-cellular signaling network using single-cell RNA sequencing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hani Keshavarz Alikhani ◽  
Bahare Shokoohian ◽  
Sama Rezasoltani ◽  
Nikoo Hossein-khannazer ◽  
Abbas Yadegar ◽  
...  

Extracellular vesicles (EVs), as nano-/micro-scale vehicles, are membranous particles containing various cargoes including peptides, proteins, different types of RNAs and other nucleic acids, and lipids. These vesicles are produced by all cell types, in which stem cells are a potent source for them. Stem cell-derived EVs could be promising platforms for treatment of infectious diseases and early diagnosis. Infectious diseases are responsible for more than 11 million deaths annually. Highly transmissible nature of some microbes, such as newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), drives researcher’s interest to set up different strategies to develop novel therapeutic strategies. Recently, EVs-based diagnostic and therapeutic approaches have been launched and gaining momentum very fast. The efficiency of stem cell-derived EVs on treatment of clinical complications of different viruses and bacteria, such as SARS-CoV-2, hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), Staphylococcus aureus, Escherichia coli has been demonstrated. On the other hand, microbial pathogens are able to incorporate their components into their EVs. The microbe-derived EVs have different physiological and pathological impacts on the other organisms. In this review, we briefly discussed biogenesis and the fate of EVs. Then, EV-based therapy was described and recent developments in understanding the potential application of stem cell-derived EVs on pathogenic microorganisms were recapitulated. Furthermore, the mechanisms by which EVs were exploited to fight against infectious diseases were highlighted. Finally, the deriver challenges in translation of stem cell-derived EVs into the clinical arena were explored.


2018 ◽  
Vol 38 (12) ◽  
pp. 2073-2091 ◽  
Author(s):  
Ligen Shi ◽  
Marcelo Rocha ◽  
Rehana K Leak ◽  
Jingyan Zhao ◽  
Tarun N Bhatia ◽  
...  

Recent advances in stroke reperfusion therapies have led to remarkable improvement in clinical outcomes, but many patients remain severely disabled, due in part to the lack of effective neuroprotective strategies. In this review, we show that 95% of published preclinical studies on “neuroprotectants” (1990–2018) reported positive outcomes in animal models of ischemic stroke, while none translated to successful Phase III trials. There are many complex reasons for this failure in translational research, including that the majority of clinical trials did not test early delivery of neuroprotectants in combination with successful reperfusion. In contrast to the clinical trials, >80% of recent preclinical studies examined the neuroprotectant in animal models of transient ischemia with complete reperfusion. Furthermore, only a small fraction of preclinical studies included long-term functional assessments, aged animals of both genders, and models with stroke comorbidities. Recent clinical trials demonstrate that 70%–80% of patients treated with endovascular thrombectomy achieve successful reperfusion. These successes revive the opportunity to retest previously failed approaches, including cocktail drugs that target multiple injury phases and different cell types. It is our hope that neurovascular protectants can be retested in future stroke research studies with specific criteria outlined in this review to increase translational successes.


2013 ◽  
Vol 3 (2) ◽  
pp. 20120067 ◽  
Author(s):  
Timothy D. Butters ◽  
Oleg V. Aslanidi ◽  
Jichao Zhao ◽  
Bruce Smaill ◽  
Henggui Zhang

Sheep are often used as animal models for experimental studies into the underlying mechanisms of cardiac arrhythmias. Previous studies have shown that biophysically detailed computer models of the heart provide a powerful alternative to experimental animal models for underpinning such mechanisms. In this study, we have developed a family of mathematical models for the electrical action potentials of various sheep atrial cell types. The developed cell models were then incorporated into a three-dimensional anatomical model of the sheep atria, which was recently reconstructed and segmented based on anatomical features within different regions. This created a novel biophysically detailed computational model of the three-dimensional sheep atria. Using the model, we then investigated the mechanisms by which paroxysmal rapid focal activity in the pulmonary veins can transit to sustained atrial fibrillation. It was found that the anisotropic property of the atria arising from the fibre structure plays an important role in facilitating the development of fibrillatory atrial excitation waves, and the electrical heterogeneity plays an important role in its initiation.


2013 ◽  
Vol 80 (1) ◽  
pp. 11-19
Author(s):  
Gigliola Sica

The therapeutic use of stem cells and tissue engineering techniques are emerging in urology. Here, stem cell types, their differentiating potential and fundamental characteristics are illustrated. The cancer stem cell hypothesis is reported with reference to the role played by stem cells in the origin, development and progression of neoplastic lesions. In addition, recent reports of results obtained with stem cells alone or seeded in scaffolds to overcome problems of damaged urinary tract tissue are summarized. Among others, the application of these biotechnologies in urinary bladder, and urethra are delineated. Nevertheless, apart from the ethical concerns raised from the use of embryonic stem cells, a lot of questions need to be solved concerning the biology of stem cells before their widespread use in clinical trials. Further investigation is also required in tissue engineering utilizing animal models.


Sign in / Sign up

Export Citation Format

Share Document