scholarly journals Review of Motors for Electrical Vehicles

Author(s):  
Tahir Aja Zarma ◽  
Ahmadu Adamu Galadima ◽  
Maruf A. Aminu

The need for clean energy and removal of toxic emission from internal combustion engines have led researchers and engineers into exploring and developing new drive systems. The development of hybrid cars has greatly reduced the emission level of vehicles. However, this is not enough. The purely electrical vehicles are 100% clean in service and as such their deployment is of great importance. Therefore, these vehicles replace the internal combustion engine in conventional cars and automobiles with electric motors. Hence, the need for the motor drive in an electric vehicle that is highly efficient with low weight, high power density and cheaply available in the market. In this paper, a review of different electric motors with respect to their design simplicity, cost, ruggedness and efficiency is presented. Finally, the brushless DC motor is proven to be an efficient and most suitable candidate for propulsion drive in electric vehicles and hybrid electric vehicles. However, its control is insufficient. A conceptual method to improve its control is also presented.

2019 ◽  
Vol 177 (2) ◽  
pp. 46-49
Author(s):  
Mateusz SZRAMOWIAT

The article presents currently applied construction solutions for currently used cooling systems for internal combustion engines. There were presented their defects and possible development directions were indicated. On this basis the concept of a cooling system which will enable the improvement of heat exchange in the internal combustion engine has been proposed.


2014 ◽  
Vol 26 (4) ◽  
pp. 271-280
Author(s):  
Ivan Bolkovac ◽  
Marko Horvat ◽  
Kristian Jambrošić ◽  
Hrvoje Domitrović

The paper discusses the issue of adding artificial warning sounds to hybrid and fully electric vehicles, in order to increase traffic safety by making these vehicles audible at low speeds. The goal of this modification is to enable the pedestrians to perceive possible danger coming from such a vehicle in time to respond accordingly. Following the results of previous research which state that the sounds of internal combustion engines are valid candidates for artificial warning sounds to be added to hybrid or fully electric vehicles, a preliminary examination of the suitability and acceptability of different engine sounds in various modes of operation has been conducted. The chosen modes of operation are running in idle, at 2000 rpm and 3000 rpm with the vehicle stopped. Both gasoline and diesel engines were investigated. To expand the range of engine sounds, the type of vehicles was not limited to personal cars. The results show significant differences in suitability of engine sounds for the stated purpose, with vehicle type being the main differentiating factor.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2872
Author(s):  
Andrzej Szałek ◽  
Ireneusz Pielecha

The development of internal combustion engines is currently based around the ideas of downsizing and rightsizing. These trends, however, are not very widespread in vehicles with hybrid drive systems. Nevertheless, the authors analyzed the performance indicators of hybrid drives in downsized vehicles. Two generations of a vehicle model, equipped with hybrid drive systems, were used in the analysis in which not only the design of the internal combustion engine was changed, but also other hybrid drive systems (including the transmission, electric motors and high-voltage batteries). The paper analyzes the energy flow in two hybrid vehicles of different generations during tests in real road driving conditions in accordance with the requirements of the RDE (real driving emissions) tests. The authors have confirmed that newer vehicle designs extend the vehicle range by 38% in the electric mode under the conditions of road traffic (68% in the urban conditions). The application of a combustion engine with better operating indexes did not result in its greater load, but led to limitation of the maximum pressure-volume (PV) diagram. The change of the battery to Li-ion, despite its lower electric and energy capacity, led to an increase in vehicle’s working parameters (power and regenerative braking).


2015 ◽  
Vol 160 (1) ◽  
pp. 56-61
Author(s):  
Kazimierz ROMANISZYN

Modern vehicles with hybrid combustion-electric drive systems are an important element in the strategy for reducing fuel consumption and emissions of exhaust gas components. Determinant of the use and development is to achieve substantial benefits in terms of classical powertrain vehicles equipped with internal combustion engines. This paper presents the concept of kinematic ratio selection between the engine and the electric machine. This concept is based on the analysis of the internal combustion engine load caused by the resistances of motion and the best possible assessment of the additional load caused by the operation of the generator. It is proposed that the energy transferred to the generator was taken in a most preferred area of the engine performance characteristics and generator by changing kinematic ratio between the engine and the generator. The described concept can also be used for the recovery of vehicles braking energy.


2019 ◽  
Vol 179 (4) ◽  
pp. 169-175
Author(s):  
Marta MACIEJEWSKA ◽  
Paweł FUĆ ◽  
Monika KARDACH

The increasingly restrictive standards related to exhaust emissions from cars make difficult the development of internal combustion engines. The activities undertaken in the design of internal combustion engines are mainly based on downsizing, e.g decreasing the engines displacement. The main direction in the development of vehicle propulsion is to reduce carbon dioxide emissions. It is expected to reduce CO2 emissions in 2020 to reach 95 g/km. Electric vehicles achieve low noise levels and do not emitted a burn, and thus, their use leads to a reduction in the amount of toxic exhaust gases in the air. The aspect of reducing emissions of harmful exhaust compounds and activities focusing on downsizing on the market of combustion engine cars leads to a significant increase the number of electric vehicles. In 2018 around 95 million motor vehicles were registered in the world, of which around 12 million in the European Union and 273 thousand in Poland. The number of electric vehicles among all sold is around 5.5%. Every year new, more technologically advanced models appear on the electric vehicle market. In 2018, the most popular model was the Nissan LEAF and the BAIC EC-Series. A large number of Renault ZOE have also been sold. In article analyzed different models of electric vehicle, which are available on market and presented the characteristics based on e.g. price per 100 kilometers, range for every model or charging time.


Author(s):  
Fábio C. Barbosa

Abstract The transport industry, as any other sector, has been permanently challenged by both the continuously stringent environmental standards and the energy efficiency requirements, which has driven a set of initiatives focused on both the fuel burn reduction and the environmental performance improvement. The rail sector currently relies on the efficient and local zero emission electrical traction for the medium to heavy density corridors. However, for the light to medium density corridors (both passenger and freight), given the high upfront costs associated with the electrical infrastructure, they are currently required to rely on fossil fuel based traction (often, the diesel-electric) architecture, with an inherent efficiency and environmental burden. The advent of hybridization, i.e. the use of more than one power source in a powertrain (mainly — but not restricted to — an internal combustion engine (ICE) and electric motors (EM), associated with an electrical energy storage device - ESD) — currently a feasible approach for the automotive sector — has opened the way for the rail industry, as an opportunity to improve the energetic efficiency and reduce the environmental footprint for the aforementioned low to medium density rail corridors, without the cost burden of an electrical infrastructure. The hybrid powertrain efficiency drivers are basically: i) kinetic energy recovery, through the use of the regenerative braking (i.e. using electric motors as generators, to recover part of the train’s kinetic energy); ii) improved engine performance, avoiding the low efficiency (low load) engine range and iii) engine downsizing (engine power requirement reduction, as it is assisted by the electric traction on power bursts). From an environmental perspective, the reduced fuel consumption also means lower emissions. Moreover, hybrid configurations might also reduce noise and gaseous engine emissions within/nearby stations or urban rail yards, by switching off internal combustion engines, running the train and powering auxiliary systems with the previously stored electrical energy on the ESD. Finally, for electrified rail lines, the hybrid rail configuration might also provide the so called last mile capability, used to circumvent non electrified rail stretches, like bridges or tunnels, as well as small extension non electrified rail segments. This work presents a review of hybrid rail technology, covering hybrid configuration and energy storage devices, from both a technical, operational and environmental perspective, supported on current available technical literature, as well as on simulation and field test reports, followed by a near to mid term outlook of hybrid rail technology for both freight and passenger segments.


2019 ◽  
Vol 125 ◽  
pp. 27-36
Author(s):  
Marek Idzior ◽  
Martin Kornaszewski

The publication contains comments about the future of vehicle drives. The essence of the development of electric drives and the specificity of the construction of electric vehicles are presented. The interest in vehicles powered by electric motors, despite the unquestionable long-term hegemony of vehicles with an internal combustion engine, is growing. This is due to the growing public awareness about the issues of shrinking fossil fuel resources and environmental pollution caused by internal combustion engines. The development of electrotechnics related to computerization gives car designers a wide field to develop the concept of an electric motor. With simultaneous market demand for vehicles with the lowest possible emissions, electric vehicles have found interest in the commercial market, and the value of this industry and the percentage share in the automotive market is gradually increasing.


Author(s):  
Manas Ranjan Padhi ◽  
Siba Prasad Mishra

Methyl ester as biodiesel is one clean energy sources for fueling diesel engines. The adverse effects of the conventional fossil fuels and rise in fuel price have made researchers to carry out their researches on various sources of biodiesels. The process of producing biodiesel from vegetable oil is not so economical due to cost of the raw materials though there are reductions in emission gases from automobile exhaust. The cooking oil as waste is not eco-friendly and difficult to dispose. The same can be used as a part substitute to diesel to run internal combustion engine to economize the fuel cost, reduce environmental pollution, ameliorate the difficulties of unburnt cooking oil disposal. Recent study envisages an attempt to convert the waste cooking oil to fatty acid methyl ester (FAME) as a supplement to diesel. An internal combustion engine was run with different proportion by substituting with FAME acquired from cooking oil waste. The analyses of the noxious gases released have been conducted to find the concentration of noxious gasses by using Exhaust Gas Analyzer. The percentage of toxic gasses exhausted on running the internal combustion engines with extracted biodiesel at 10%, 20% and 30% mix were analyzed. The results revealed that the percentage of emitted gases like Hydrocarbon (HC), and Monoxide of Carbon (CO) were reduced and it was found optimum at a blend of 20% of biodiesel when added with 80% conventional diesel but need further work on it.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 996
Author(s):  
Venera Giurcan ◽  
Codina Movileanu ◽  
Adina Magdalena Musuc ◽  
Maria Mitu

Currently, the use of fossil fuels is very high and existing nature reserves are rapidly depleted. Therefore, researchers are turning their attention to find renewable fuels that have a low impact on the environment, to replace these fossil fuels. Biogas is a low-cost alternative, sustainable, renewable fuel existing worldwide. It can be produced by decomposition of vegetation or waste products of human and animal biological activity. This process is performed by microorganisms (such as methanogens and sulfate-reducing bacteria) by anaerobic digestion. Biogas can serve as a basis for heat and electricity production used for domestic heating and cooking. It can be also used to feed internal combustion engines, gas turbines, fuel cells, or cogeneration systems. In this paper, a comprehensive literature study regarding the laminar burning velocity of biogas-containing mixtures is presented. This study aims to characterize the use of biogas as IC (internal combustion) engine fuel, and to develop efficient safety recommendations and to predict and reduce the risk of fires and accidental explosions caused by biogas.


2021 ◽  
Vol 1 ◽  
pp. 477-486
Author(s):  
Vahid Douzloo Salehi

AbstractHydrogen is a promising fuel to fulfil climate goals and future legislation requirements due to its carbon-free property. Especially hydrogen fueled buses and heavy-duty vehicles (HDVs) strongly move into the foreground. In contrast to the hydrogen-based fuel cell technology, which is already in commercial use, vehicles with hydrogen internal combustion engines (H2-ICE) are also a currently pursued field of research, representing a potentially holistic carbon-free drive train. Real applications of H2-ICE vehicles are currently not known but can be expected, since their suitability is put to test in a few insolated projects at this time. This paper provides a literature survey to reflect the current state of H2-ICEs focused on city buses. An extended view to HDVs and fuel cell technology allows to recognize trends in hydrogen transport sector, to identify further research potential and to derive useful conclusion. In addition, within this paper we apply green MAGIC as a holistic approach and discuss Well-to-Tank green hydrogen supply in relation to a H2-ICE city bus. Building on that, we introduce the upcoming Hydrogen-bus project, where tests of H2-ICE buses in real driving mode are foreseen to investigate Tank-to-Wheel.


Sign in / Sign up

Export Citation Format

Share Document