scholarly journals A NEW 3D ROLLER APPROACH FOR FACING ROTATIONAL SURF ZONE HYDRODYNAMICS

2011 ◽  
Vol 1 (32) ◽  
pp. 50
Author(s):  
Antonino Viviano ◽  
Rosaria Ester Musumeci ◽  
Enrico Foti

A 2DH highly nonlinear Boussinesq-type of model for breaking waves has been developed in order to investigate surf zone hydrodynamics, also in the presence of complex bathymetries. The set of equations includes continuity and rotational momentum equations, coupled with the vorticity transport equation. An appropriate spatial definition of the 3D roller concept, along with an algorithm for accurately tracking the roller position, have been on purposely developed. Several numerical simulations have been carried out for the case of a submerged elliptic shoal. The results have been compared with both experimental data and with the results of other numerical models available in the literature. Finally, the vorticity dynamics under a breaking wave has been analyzed both in time and space, showing that a fairly correct interpretation of the wake effect in the rear part of the wave crest is obtained.

1976 ◽  
Vol 1 (15) ◽  
pp. 25 ◽  
Author(s):  
Edward B. Thornton ◽  
James J. Galvin ◽  
Frank L. Bub ◽  
David P. Richardson

The sight and sound of breaking waves and surf is so familiar and enjoyable that we tend to forget how little we really understand about them. Why is it, that compared to other branches of wave studies our knowledge of breaking waves is so empirical and inexact? The reason must lie partly in the difficulty of finding a precise mathematical description of a fluid flow that is in general nonlinear and time-dependent. The fluid accelerations can no longer be assumed t o be small compared t o gravity, as in Stokes's theory for periodic waves and the theory of cnoidal waves in shallow water, nor is the particle velocity any longer small compared to the phase velocity. The aim of this paper is to bring together s ome recent contributions to the calculation both of steep symmetric waves and of time-dependent surface waves. These have a bearing on the behaviour of whitecaps in deep water and of surf in the breaker zone . Since spilling breakers in gently shoaling water closely resemble solitary waves, we begin with the description of solitary waves of limiting amplitude, then discuss steep waves of arbitrary height. The observed intermittency of whitecaps is discussed in terms of the energy maximum, as a function of wave steepness, In Sections 6 and 7 a simpler description of steady symmetric waves is proposed, using an asymptotic expression for the flow near the wave crest. Finally we describe a new numerical technique (MEL, or mixed Eulerian-Lagrangian) with which it has been found possible to follow the development of periodic waves past the point when overturning takes place. Measurement of waves, and vertical and horizontal water particle velocities were made of spilling, plunging and surging breakers at sandy beaches in the vicinity of Monterey, California. The measured breaking waves, derived characteristically from swell-type waves, can be described as highly nonlinear. Spectra and cross spectra were calculated between waves and velocities. Secondary waves were noted visually and by the strong harmonics in the spectra. The strength of the harmonics is related to the beach steepness, wave height and period. The phase difference between waves and horizontal velocities indicates the unstable crest of the wave leads the velocities on the average by 5-20 degrees. Phase measurements between wave gauges in a line perpendicular to the shore show breaking waves to be frequency nondispersive indicating phase-coupling of the various wave components. The coherence squared values between the sea surface elevation and the horizontal water particle velocity were high in all runs, ranging above 0.8 at the peak of the spectra. The high coherence suggests that most of the motion in the body of breaking waves is wave-induced and not turbulent.


1974 ◽  
Vol 1 (14) ◽  
pp. 45 ◽  
Author(s):  
Ole Secher Madsen

The possible effect on the stability of a porous sand bed of the flow induced within the bed during the passage of near-breaking or breaking waves is considered. It is found that the horizontal flow rather than the vertical flow within the bed may affect its stability. An approximate analysis, used in geotechnical computations of slope stability, indicates that a momentary bed failure is likely to occur during the passage of the steep front slope of a near-breaking wave. Experimental results for the pressure gradient along the bottom under near-breaking waves are presented. These results indicate that the pressure gradient is indeed of sufficient magnitude to cause the momentary failure suggested by the theoretical analysis. The loss of stability of the bed material due to the flow induced within the bed itself may affect the amount of material set in motion during the passage of a near-breaking or breaking wave, in particular, in model tests employing light weight bed material. The failure mechanism considered here is also used as the basis for a hypothesis for the depth of disturbance of the bed in the surf zone. The flow induced in a porous bed is concluded to be an important mechanism which should be considered when dealing with the wave-sediment interaction in the surf zone.


2012 ◽  
Vol 91 (3) ◽  
pp. 357-372 ◽  
Author(s):  
B.G. Ruessink ◽  
M. Boers ◽  
P.F.C. van Geer ◽  
A.T.M. de Bakker ◽  
A. Pieterse ◽  
...  

AbstractAn equilibrium dune-erosion model is used every six years to assess the capability of the most seaward dune row on the Dutch Wadden islands to withstand a storm with a 1 in 10,000 probability for a given year. The present-day model is the culmination of numerous laboratory experiments with an initial cross-shore profile based on the central Netherlands coast. Large parts of the dune coast of the Wadden islands have substantially different dune and cross-shore profile characteristics than found along this central coast, related to the presence of tidal channels, ebb-tidal deltas, beach-plains and strong coastal curvature. This complicated coastal setting implies that the predictions of the dune-erosion model are sometimes doubtful; accordingly, a shift towards a process-based dune-erosion model has been proposed. A number of research findings based on recent laboratory and field studies highlight only few of the many challenges that need to be faced in order to develop and test such a model. Observations of turbulence beneath breaking waves indicate the need to include breaking-wave effects in sand transport equations, while current knowledge of infragravity waves, one of the main sand transporting mechanisms during severe storm conditions, is strongly challenged by laboratory and field observations on gently sloping beaches that are so typical of the Wadden islands. We argue that in-situ and remote-sensing field observations, laboratory experiments and numerical models need to be the pillars of Earth Scientific research in the Wadden Sea area to construct a meaningful process-based dune-erosion tool.


Author(s):  
Gu¨nther F. Clauss ◽  
Robert Stu¨ck ◽  
Florian Stempinski ◽  
Christian E. Schmittner

For the analysis of loads and motions of marine structures in harsh seaways precise information about the hydrodynamics of waves is required. While the surface motion of waves can easily be measured in physical wave tanks other critical characteristics such as the instantaneous particle velocity and acceleration as well as the pressure field, especially under the wave crest are difficult and time-consuming to obtain. Therefore a new method is presented to approximate the wave potential of a given instantaneous wave contour. Numerical methods — so called numerical wave tanks (NWTs) — are developed to provide the desired insight into wave hydrodynamics. A potential theory method based on the Finite Element method (Pot/FE), a RANSE (Reynolds-Averaged Navier-Stokes Equations) method applying VOF (Volume of Fluid) and a combination of both is utilized for the simulation of different model wave trains. The coupling of both CFD (computational fluid dynamics) solvers is a useful approach to benefit from the advantages of the two different methods: The Pot/FE solver WAVETUB (wave simulation code developed at Technical University Berlin) allows a very fast and accurate simulation of the propagation of nonbreaking waves while the RANSE/VOF solver has the capability of simulating breaking waves. Two different breaking criteria for the detection of wave breaking are implemented in WAVETUB for triggering the automated coupling process by data transfer at the interface. It is shown that an efficient method for the simulation of breaking wave trains including wave-structure interaction in 2D and 3D is established by the coupling of both CFD codes. All results are discussed in detail.


Author(s):  
Zhigang Tian ◽  
Marc Perlin ◽  
Wooyoung Choi

A preliminary study on the occurrence of air flow separation over mechanically generated water waves under following wind conditions is presented. Separated air flows over both non-breaking and breaking waves are observed in the flow visualization. A first attempt to identify an air flow separation criterion based on both wind speed and wave steepness is made. It was believed that, in the case of water waves propagating in the following wind condition, air flow separation will occur only in the presence of breaking waves. However, some laboratory experiments and field measurements suggested the occurrence of air flow separation over nonbreaking waves. Therefore, we conducted lab experiments to observe the air flow over mechanically generated waves. In the experiments, the air is seeded with water droplets generated with a high-pressure spray gun and is illuminated with a thin laser light sheet. A high-speed imaging system is used to record and observe the air flow over the mechanically generated wave waves. Our observations show that the separation of air flow occurs above both breaking and non-breaking wave crests, implying that wave breaking is sufficient, but not necessary for air flow separation. In addition, as compared to the separation over breaking waves, a higher wind speed is necessary for the separation over non-breaking ones, indicating that a robust air flow separation criterion likely depends on both the wave crest geometry and the wind speed above the crest. Our preliminary results support, to a certain degree, such a criterion. To the best of our knowledge, this criterion has not been reported previously in laboratory studies.


1986 ◽  
Vol 1 (20) ◽  
pp. 72 ◽  
Author(s):  
David R. Basco ◽  
Takao Yamashita

Breaking waves undergo a transition from oscillatory, irrotational motion, to highly rotational (turbulent) motion with some particle translation. On plane or monotonically decreasing beach profiles, this physically takes place in such a way that the mean water level remains essentially constant within the transition region. Further shoreward a rapid set-up takes place within the inner, bore-like region. The new surf zone model of Svendsen (1984) begins at this transition point and the new wave there contains a trapped volume of water within the surface roller moving with the wave speed. This paper describes a simple model over the transition zone designed to match the Svendsen (1984) model at the end of the transition region. It uses a simple, linear growth model for the surface roller area development and semi-empirical model for the variation of the wave shape factor. Breaking wave type can vary from spilling through plunging as given by a surf similarity parameter. The model calculates the wave height decrease and width of the transition region for all breaker types on plane or monotonically depth decreasing beaches.


2016 ◽  
Vol 858 ◽  
pp. 354-358
Author(s):  
Tao You ◽  
Li Ping Zhao ◽  
Zheng Xiao ◽  
Lun Chao Huang ◽  
Xiao Rui Han

Within the surf zone which is the region extending from the seaward boundary of wave breaking to the limit of wave uprush, breaking waves are the dominant hydrodynamics acting as the key role for sediment transport and beach profile change. Breaking waves exhibit various patterns, principally depending on the incident wave steepness and the beach slope. Based on the equations of conservation of mass, momentum and energy, a theoretical model for wave transformation in and outside the surf zone was obtained, which is used to calculate the wave shoaling, wave set-up and set down and wave height distributions in and outside the surf zone. The analysis and comparison were made about the breaking point location and the wave height variation caused by the wave breaking and the bottom friction, and about the wave breaking criterion under regular and irregular breaking waves. Flume experiments relating to the regular and irregular breaking wave height distribution across the surf zone were conducted to verify the theoretical model. The agreement is good between the theoretical and experimental results.


2011 ◽  
Vol 1 (8) ◽  
pp. 2 ◽  
Author(s):  
Charles L. Bretschneider

This paper discusses the problem pertaining to the modification of the wave spectrum over the continental shelf. Modification factors include bottom friction, percolation, refraction, breaking waves, ocean currents, and regeneration of wind waves in shallow water, among other factors. A formulation of the problem is presented but no general solution is made, primarily because of lack of basic data. Several special solutions are presented based on reasonable assumptions. The case for a steep continental shelf with parallel bottom contours and wave crests parallel to the coast and for which bottom friction is neglected has been investigated. For this case it is found that the predominant period shifts toward longer periods. The implication is, for example, that the significant periods observed along the U. S. Pacific coast are longer than those which would be observed several miles westward over deep water. The case for a gentle continental shelf with parallel bottom contour and wave crests parallel to the coast and for which bottom friction is important has also been investigated. For this case it is found that the predominant period shifts toward shorter periods as the water depth decreases. The implication is, for example, that the significant periods observed in the shallow water over the continental shelf are shorter than those which would be observed beyond the continental slope. In very shallow water, because shoaling becomes important, a secondary peak appears at higher periods. The joint distribution of wave heights and wave periods is required in order to determine the most probable maximum breaking wave, which can be of lesser height than the most probable maximum non-breaking wave. In very shallow water the most probable maximum breaking wave which first occurs would be governed by the breaking depth criteria, whereas in deepwater wave steepness can also be a governing factor. It can be expected that in very shallow water the period of the most probable maximum breaking wave should be longer than the significant period; and for deeper water the period of the most probable maximum breaking wave can be less than the significant period.


2021 ◽  
Vol 51 (1) ◽  
pp. 37-46
Author(s):  
George Mellor

AbstractThere have been several numerical models developed to represent the phase-averaged flow in the surf zone, which is characterized by kD less than unity, where k is wavenumber and D is the water column depth. The classic scenario is that of surface gravity waves progressing onto a shore that create an offshore undertow current. In fact, in some models, flow velocities are parameterized assuming the existence of an undertow. The present approach uses the full vertically dependent continuity and momentum equations and the vertically dependent wave radiation stress in addition to turbulence equations. The model is applied to data that feature measurements of wave properties and also cross-shore velocities. In this paper, both the data and the model application are unidirectional and the surface stress is nil, representing the simplest surf zone application. Breaking waves are described empirically. Special to the surf zone, it is found that a simple empirical adjustment of the radiation stress enables a favorable comparison with data. Otherwise, the model applies to the open ocean with no further empiricism. A new bottom friction algorithm had been derived and is introduced in this paper. In the context of the turbulence transport model, the algorithm is relatively simple.


Author(s):  
Dominic Van der A ◽  
Joep Van der Zanden ◽  
Ming Li ◽  
James Cooper ◽  
Simon Clark ◽  
...  

Multiphase CFD models recently have proved promising in modelling cross‐shore sediment transport and morphodynamics (Jacobsen et al 2014). However, modelling breaking wave turbulence remains a major challenge for these models, because it occurs at very different spatial and temporal length scales and involves the interaction between surface generated turbulence and turbulence generated in the bottom boundary layer. To an extent these challenges arise from a lack of appropriate experimental data, since most previous experimental studies involved breaking waves at small-scale, and have not permitted investigation of the turbulent boundary layer processes. Moreover, most existing studies have concentrated on regular waves, thereby excluding the flow and turbulence dynamics occurring at wave group time-scales under irregular waves within the surf zone. These limitations motivated a new experiment in the large-scale CIEM wave flume in Barcelona involving regular and irregular waves. The experiment was conducted in May-July 2017 within the HYDRALAB+ Transnational Access project HYBRID.


Sign in / Sign up

Export Citation Format

Share Document