scholarly journals Systematic Study of Important Variables in Absorption Drug Loading into Specially Formulated Ion-Pairing PLGA Nanoparticles Using Doxorubicin Hydrochloride as Model Drug

2014 ◽  
Vol 9 (3) ◽  
pp. 92-111
Author(s):  
Korlapativenkateswara Rao
Author(s):  
Rassoul Dinarvand ◽  
TS Jafarzadeh Kashi ◽  
Eskandarion ◽  
Esfandyari-Manesh ◽  
Samadi ◽  
...  

2021 ◽  
Vol 17 (10) ◽  
pp. 1939-1950
Author(s):  
Beibei Lin ◽  
Xuegu Xu ◽  
Xiaobi Zhang ◽  
Yinfei Yu ◽  
Xiaoling Wang

We prepared poly(lactide-co-glycolide) (PLGA) encapsulated with chlorin e6 (Ce6) in an effort to increase the stability and efficiency of photosensitizers for photodynamic therapy (PDT). We determined that Ce6-loaded PLGA nanoparticles (PLGA-Ce6 NPs) had drug-loading efficiency of 5%. The efficiency of encapsulation was 82%, the zeta potential was- 25 mV, and the average diameter was 130 nm. The encapsulation of Ce6 in PLGA nanoparticles showed excellent stability. The nanoparticles exhibited sustained Ce6 release profiles with 50% released at the end of 3 days, whereas free Ce6 showed rapid release within 1 day. Ce6 release patterns were controlled by encapsulation into PLGA. The uptake of PLGA-Ce6 NPs was significantly enhanced by endocytosis in the first 8 hours in the HCT-116 cell line. An intracellular reactive oxygen species assay revealed the enhanced uptake of the nanoparticles. An in vitro anti-tumor activity assay showed that the PLGA-Ce6 NPs exhibited enhanced phototoxicity toward HCT-116 cells and a slightly lower IC50 value in HCT-116 cells than Ce6 solution alone. Exposure of HCT-116 cell spheroids to PLGA-Ce6 NPs penetrated more profoundly and had better phototoxicity than pure drugs. These findings suggest that PLGA-Ce6 NPs might serve as PDT for colorectal cancer.


2021 ◽  
Author(s):  
Shishuai Dang ◽  
Zhengwei Huang ◽  
Ying Huang ◽  
Xin Pan ◽  
Chuanbin Wu

<p>Lipid-based nanoparticles (LBNs) are a new type of nanoparticulate drug delivery system, which have been gradually shown broad prospects in pulmonary drug delivery systems. However, the main disadvantage of these LBNs for inhalable drugs with limited lipophilicity is the low encapsulation capacity. Herein, this study anticipates establishing a technology platform to improve the loading capacity of low lipophilicity drugs in LBNs, for the therapy of lung diseases. A proof-of-concept was carried out using Beclomethasone dipropionate (BDP) as a model drug. BDP was conjugated with stearic acid (SA), a kind of the lipid matrix for LBN. The conjugate was characterized and the interactions between the conjugate and SA were investigated by molecular dynamics simulation. It is expected that the drug loading capacity of weak-lipophilic drugs in LBN can be increased by establishing the technology platform, and the application of LBNs in pulmonary delivery can be broadened.</p>


2021 ◽  
Vol 70 (1) ◽  
pp. 32-40
Author(s):  
Holická Martina ◽  
Muselík Jan ◽  
Kubová Kateřina ◽  
Deáková Veronika ◽  
Pavloková Sylvie ◽  
...  

Microparticles based on biodegradable synthetic lactic acid and glycolic acid copolymer (PLGA) were successfully prepared by the solvent evaporation method. Ibuprofen was chosen as the model drug. Various formulation and process parameters have been used to prepare each sample with emphasis on size reduction. The effect of the emulsification method (direct emulsification or emulsification using an ULTRA-TURRAX or a NE-1000 dispenser), the volume of the aqueous phase (200, 800 ml) and the stirring speed of the emulsion system (600, 1000 rpm) on the characteristic properties of microparticles, such as encapsulation efficiency, drug loading and particle morphology, was observed. The resulting microparticles were evaluated by optical microscopy or laser diffraction and the dissolution test was performed. It was found that the sample prepared by direct emulsification with 800 ml of an aqueous phase at 600 rpm provided the most favorable results, meanwhile the emulsification pre-step using a homogenizer caused promising particle size reduction. Gradual emulsification was evaluated as inapplicable due to great losses.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 630 ◽  
Author(s):  
Katarzyna Rycerz ◽  
Krzysztof Adam Stepien ◽  
Marta Czapiewska ◽  
Basel T. Arafat ◽  
Rober Habashy ◽  
...  

Embedded three-dimensional printing (e-3DP) is an emerging method for additive manufacturing where semi-solid materials are extruded within a solidifying liquid matrix. Here, we present the first example of employing e-3DP in the pharmaceutical field and demonstrate the fabrication of bespoke chewable dosage forms with dual drug loading for potential use in pediatrics. LegoTM-like chewable bricks made of edible soft material (gelatin-based matrix) were produced by directly extruding novel printing patterns of model drug ink (embedded phase) into a liquid gelatin-based matrix (embedding phase) at an elevated temperature (70 °C) to then solidify at room temperature. Dose titration of the two model drugs (paracetamol and ibuprofen) was possible by using specially designed printing patterns of the embedded phase to produce varying doses. A linearity [R2 = 0.9804 (paracetamol) and 0.9976 (ibuprofen)] was achieved between percentage of completion of printing patterns and achieved doses using a multi-step method. The impact of embedded phase rheological behavior, the printing speed and the needle size of the embedded phase were examined. Owning to their appearance, modular nature, ease of personalizing dose and geometry, and tailoring and potential inclusion of various materials, this new dosage form concept holds a substantial promise for novel dosage forms in pediatrics.


2020 ◽  
Vol 859 ◽  
pp. 3-8
Author(s):  
Vipaluk Patomchaiviwat ◽  
Sontaya Limmatvapirat ◽  
Chaisai Sirisapaya ◽  
Rohanee Kolae ◽  
Kulmanee Anantakul ◽  
...  

The objective of this study was to investigate the effect of modified hydroxypropyl tapioca starch (HPTS) and % drug loading on physical property of tablet. Paracetamol was used as model drug because of its poor compressibility. The filler ability of modified HPTS such as hydroxyl propyl oxidized tapioca starch (HPOTS), hydroxyl propyl crosslinked tapioca starch (HPCTS) and pregelatinized tapioca starch (PTS) were evaluated and compared with the commercial starch (Starch 1500®). Tablets were prepared by direct compression method and the percent drug loading were 15, 30, 45, 60, 75%. For modified HPTS, the hardness of the tablets tended to decrease when the concentration of paracetamol increased. At drug concentrations of 15-30%, HPOTS exhibited good performance of tablet as indicated by the high hardness, low friability and acceptable disintegration time. The obtained results were better than HPTS and comparable to Starch 1500®. Moreover, the results revealed that tablet containing PTS provided the highest hardness and prolonged disintegration time (>30 min) while tablet containing HPCTS showed rapid disintegration time (<2 min). Therefore, modified HPTS disclosed promising properties for application as tablet filler


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jaleh Varshosaz ◽  
Farshid Hassanzadeh ◽  
Hojjat Sadeghi ◽  
Zahra Ghelich Khan ◽  
Mahboobeh Rostami

Retinoic acid (R) grafted chitosan (C) copolymers with different degree of substitution of retinoic acid on the chitosan were synthesized. Retinoic acid targeted chitosan-albumin nanoparticles were prepared for targeted delivery of doxorubicin in hepatocellular carcinoma by coacervation method. Physical properties of nanoparticles including particle size, zeta potential, drug loading efficiency, and drug release profiles were studied. TEM micrographs were taken to see the morphology of nanoparticles. The cytotoxicity of doxorubicin-loaded nanoparticles was studied on HepG2 cells using MTT assay and their cellular uptake by fluorescence microscopy. FTIR and1HNMR spectra confirmed successful production of RC conjugate which was used in production of the targeted RC-albumin nanoparticles. IC50of drug loaded in these nanoparticles reduced to half and one-third compared to nontargeted nanoparticles and free drug, respectively.


2019 ◽  
Vol 14 (4) ◽  
pp. 1934578X1984270 ◽  
Author(s):  
Leniher Castan Chibas ◽  
Priscila Pavini Cintra ◽  
Monique Rodrigues Moreira ◽  
Mirian Oliveira Goulart ◽  
Sérgio Ricardo Ambrósio ◽  
...  

Polyalthic acid (PA) is a diterpene present in several trees of the Copaifera genus, with reported antitumor activity but poor water solubility. The aim of this work was the incorporation of PA in polymeric nanoparticles and the evaluation of the antiproliferative activity of this formulation in tumor (MCF-7) and normal (MCF-10A) breast cell lines. The nanoparticles were obtained by nanoprecipitation, using poly lactic-co-glycolic acid (PLGA) as the main material. Scanning electron microscopy showed nanoparticles with semispherical morphology, and dynamic light scattering measures revealed negative surface charge and average size of 98.64 ± 28 nm. The encapsulation efficiency was 98% and the drug loading was 15.6% ± 0.02%. Treatments with PA nanoparticles reduced cell proliferation more efficiently than free PA and the effect was selective on MCF-7 cells. Comet assay revealed a selective DNA damage induction by the nanoformulation on the tumor cells, which probably caused the antiproliferative effect. Our results show that PA incorporated in PLGA nanoparticles has potential as a selective cytostatic and genotoxic agent against MCF-7 cells.


Sign in / Sign up

Export Citation Format

Share Document