scholarly journals Investigation on the effect of CuO nanoparticles on the IFT and wettability alteration at the presence of [C12mim][Cl] during enhanced oil recovery processes

Author(s):  
Nabeel Kadhim Abbood ◽  
Abdolrahman obeidavi ◽  
Seyednooroldin Hosseini

AbstractIn the current study, the effect of CuO nanoparticles (CuO-NPs) at the presence of dodecyl-3-methylimidazolium chloride ([C12mim][Cl]) is investigated on the interfacial tension (IFT) reduction, wettability alteration, and even tertiary oil recovery. Since the prepared solutions with CuO-NPs are completely dark and it is impossible to measure the IFT of these solutions in the presence of crude oil using the pendant drop method (since one of the phases must be transparent for IFT measurement using the pendant drop method), n-heptane (representative of saturates) and toluene (representative of aromatics) are used only for IFT measurement of solutions prepared by CuO-NPs, while rest of the experiments are performed using crude oil. The obtained results reveal that CuO-NPs are not stable in the aqueous solution in the absence of surfactant which means fast precipitation of CuO-NPs and a high risk of pore plugging. In this way, the stability of CuO-NPs is investigated at the presence of dodecyl-3-methyl imidazolium chloride ([C12mim][Cl]) as an effective surfactant for stabilizing the CuO-NPs in the aqueous solution (more than 1 month without precipitation using 1000 ppm of IL). Further measurements reveal that although the presence of IL in the aqueous solution can reduce the IFT of oil/aqueous solution system, especially for the aqueous solutions prepared by formation brine (0.65 mN.m−1), the presence of CuO-NPs has no considerable effect on the IFT. On the other hand, not only the contact angle (CA) measurements reveal the considerable effect of IL on the wettability alteration toward water-wet condition (68.3° for IL concentration of 1000 ppm) but also the addition of CuO-NPs can significantly boost the wettability alteration toward strongly water-wet condition (23.4° for the concentration of 1000 ppm of CuO-NPs). Finally, several core flooding experiments are performed using different combinations of chemicals to find the effect of these chemicals on the tertiary oil recovery factor. The results reveal that the presence of CuO-NPs can enhance the oil recovery of injected chemical slug (aqueous solution prepared by dissolution of IL with an oil recovery factor of 10.1% based on Original oil in place (OOIP)) to 13.8, %, 16.9%, and 21.2% based on OOIP if 500, 1000, 2000 ppm of CuO-NPs existed in the solution concomitant with 1000 ppm of [C12mim][Cl].

2020 ◽  
Vol 17 (3) ◽  
pp. 749-758
Author(s):  
Omolbanin Seiedi ◽  
Mohammad Zahedzadeh ◽  
Emad Roayaei ◽  
Morteza Aminnaji ◽  
Hossein Fazeli

AbstractWater flooding is widely applied for pressure maintenance or increasing the oil recovery of reservoirs. The heterogeneity and wettability of formation rocks strongly affect the oil recovery efficiency in carbonate reservoirs. During seawater injection in carbonate formations, the interactions between potential seawater ions and the carbonate rock at a high temperature can alter the wettability to a more water-wet condition. This paper studies the wettability of one of the Iranian carbonate reservoirs which has been under Persian Gulf seawater injection for more than 10 years. The wettability of the rock is determined by indirect contact angle measurement using Rise in Core technique. Further, the characterization of the rock surface is evaluated by molecular kinetic theory (MKT) modeling. The data obtained from experiments show that rocks are undergoing neutral wetting after the aging process. While the wettability of low permeable samples changes to be slightly water-wet, the wettability of the samples with higher permeability remains unchanged after soaking in seawater. Experimental data and MKT analysis indicate that wettability alteration of these carbonate rocks through prolonged seawater injection might be insignificant.


1983 ◽  
Vol 23 (04) ◽  
pp. 645-656 ◽  
Author(s):  
Edward M. Trujillo

Trujillo, Edward M.; SPE; Marathon Oil Co. Abstract One method to achieve EOR is chemical alteration of the reservoir environment so that previously trapped oil cam begin to flow freely. Under certain conditions, caustic or alkaline solutions can do this. The work reported here shows that interfacial tension (IFT) between various crudes and caustics increases with time because of desorption of the surface-active species from the interface. The desorption rate is temperature-dependent. Four kinds of crude oil were used-a California crude, a Wyoming crude, an Illinois crude, and an Alaska crude. Only with crude oils with a high concentration of crude acids, such as the California crude, is the ultralow IFT maintained for any reasonable period of time, namely 24 hours. The presence of calcium ions at concentrations of 200 ppm or more destroys the capability of caustic to reduce the IFT's, even for the California crude. Mass-action relationships are presented that describe the equilibrium IFT at constant ionic strength between crude oils and sodium hydroxide solutions as a function of pH and calcium. Techniques are presented for evaluating time-dependent IFT's obtained by the spinning- drop apparatus. A transient mathematical model shows that IFT can increase by several orders of magnitude over a period of several days. Good agreement between the model and experimental data is obtained. The parameters obtained from these mathematical models describe crude parameters obtained from these mathematical models describe crude reactivity to caustic more accurately than conventional crude acid numbers. The transient effects observed in the laboratory may or may not be significant in the field. Introduction Several investigators have studied the reaction of caustic with crude oils. In one of the earliest publications, Reisberg and Doscher in 1956 measured IFT's between a California crude and various sodium hydroxide solutions by the pendant-drop method. The IFT was lowered by a factor of 1,000 with a 0.5% NaOH solution but increased at higher and lower concentrations. The pendant-drop ages were on the order of 5 seconds. They observed a change pendant-drop ages were on the order of 5 seconds. They observed a change in IFT with time, but no model for such a change was proposed. Jennings et al. determined a minimum IFT with a North American crude at about 0.1% NaOH, also with the pendant-drop technique. Several of their values were too low to be mea.sured (0.003 dyne/cm). Their data showed that only a small amount of calcium (25 ppm) increased the IFT between caustic and crude considerably. At 247 ppm calcium, sodium hydroxide was ineffective in reducing IFT at all concentrations up to 1%. Sodium chloride reduced the amount of caustic required to give maximum surface activity. All IFT measurements were made at 74F and at an interface age of 20 seconds. Jennings stated, "We selected 10 seconds because a study of the time variable showed that most of the decay of interfacial tension with time in these systems had occurred by the end of 10 seconds." Measurements were made on 164 crudes from 78 fields. An attempt to relate the interfacial properties to crude acid number was not very successful. One article stated that the "interfacial tension must fall below about 0.01 dynes/cm if oil recovery is to show a significant increase due to caustic injection." Cooke et al. proposed that wettability alteration plus IFT reduction was a factor in oil recoveries with caustic. They suggested a less restrictive criterion in IFT for oil recovery, stating that "No combination in which the interfacial tension was greater than 2 dynes/cm was ever found to be successful in an alkaline water flood." They also confirmed that sodium chloride is beneficial but calcium is detrimental. SPEJ p. 645


2018 ◽  
Author(s):  
Gunaseelan Dhanarajana ◽  
Shaheen Perveen ◽  
Anirban Roy ◽  
Sirshendu De ◽  
Ramkrishna Sen

Microbubble technology is increasingly finding applications in biomedical engineering, soil remediation and wastewater treatment. Recently, the use of surfactant microbubbles has been studied as an alternate to aqueous solution in pollutant remediation since they have the advantage of improving the contact with the contaminant due to their surface properties. In this research endeavor, the application potential of microbubble suspension generated using a lipopeptide biosurfactant produced by a marine strain of Bacillus megaterium in tertiary oil recovery was investigated. The microbubbles were generated using a high speed homogenizer and their properties such as stability and size distribution were studied. The microbubble suspension was used as flooding agent to recover gear oil from an artificially saturated sand packed column. The performance of microbubbles in tertiary oil recovery was compared with that of aqueous biosurfactant solution. It was found that microbubble suspension generated using biosurfactant had higher oil recovery efficiency (46%) than aqueous solution (36%). Moreover, the pressure buildup across the sand packed column was fairly low while using microbubble suspension. The increased oil recovery using microbubbles can be attributed to their effective permeation through the pores of sand packed column and closer contact between biosurfactant molecules and oil. Thus, the results obtained in this study convincingly indicate that biosurfactant stabilized microbubble suspension, due to its higher performance and lower injection pressure requirement, can serve as a potentially efficient flooding agent for tertiary oil recovery.


2021 ◽  
Author(s):  
Mingyuan Wang ◽  
Gayan A. Abeykoon ◽  
Francisco J. Argüelles-Vivas ◽  
Ryosuke Okuno

Abstract This paper presents an experimental study of improved oil recovery from fractured shale cores by huff-n-puff of the aqueous solutions of 3-pentanone. The huff-n-puff experiments with different 3-pentanone concentrations were analyzed by the material balance for components: oil, brine, and 3-pentanone. Naturally sulfate-rich brine of low salinity was used as the injection brine. Results show that the 3-pentanone solution recovered more oil from the shale matrix than the injection brine alone. The oil recovery increased when the 3-pentanone concentration increased from 0.56-wt% to 2.85-wt%. Huff-n-puff with the 2.85-wt% 3-pentanone solution showed the highest improved oil recovery by 3-pentanone. However, the huff-n-puff experiment with the 1.07-wt% 3-pentanone solution showed the highest efficiency measured by the mass ratio of the produced oil to the injected 3-pentanone. That is, an optimal concentration of 3-pentanone appeared to exist. The material balance analysis showed that 3-pentanone was efficiently imbibed into the shale matrix, and that oil was recovered from shale mainly by the displacement by brine after the wettability alteration by 3-pentanone.


Author(s):  
Kouichi Nakamura ◽  
Zhi-Gang Zhang ◽  
Ken-Ichiro Sugiyama ◽  
Masahiko Yamada

In sodium-cooled fast reactors, it is very important to evaluate sodium-water reaction from the viewpoint of safety. If once it happens in the steam generator, it is desirable its scale is small and its reaction is mild. The sodium dispersing nano particles is expected to mitigate the sodium-water reaction. Nano particles is titan particles whose diameter is tens nanometer and dispersing rate in sodium is several percent. In order to find out the effect clearly, it is essential to evaluate the reaction behavior and characteristics of physical properties closely. For this purpose, we tried to measure the surface tension of sodium dispersing nano particles as an important part of foundational physical property. We had employed the pendant drop method for the measurement, with which we can measure surface tension from the shape of pendant drop. This method is suitable for our measurement because nano sample is very limited. The measurement was done in a sealed box keeping inert gas atmosphere, which is required for sodium experiment because of an easy chemical reaction of sodium with oxygen and moisture. At first, we did a series of experiments for pure sodium. We succeeded to make pendant drops between 150°C and 350°C. For the measurement, we selected only the drops in clear mirror surface with axial symmetry. The scatter range of obtained results is slightly larger than that of a recommended equation. We estimated that it was caused due to a weak wet condition on the edge face of nozzle. Then we measured the surface tension of the sodium dispersing nano particles under the same condition. The obtained results almost show values larger than those of pure sodium. The dispersion rate of nano particles has an uncertainty in the present study. However even in giving the worst evaluation, the measured surface tensions for the sodium dispersing nano particles show larger values than those for the pure sodium.


Author(s):  
Kewen Li ◽  
Dan Wang ◽  
Shanshan Jiang

The addition of nanoparticles into water based fluids (nanofluid) with or without other chemicals to Enhance Oil Recovery (EOR) has recently received intensive interest. Many papers have been published in this area and several EOR mechanisms have been proposed. The main EOR mechanisms include wettability alteration, reduction in InterFacial surface Tension (IFT), increase in the viscosity of aqueous solution, decrease in oil viscosity, and log-jamming. Some of these mechanisms may be associated with the change in disjoining pressure because of the addition of the nanoparticles. The experimental data and results reported by different researchers, however, are not all consistent and some even conflict with others. Many papers published in recent years have been reviewed and the associated experimental data have been analyzed in this paper in order to clarify the mechanisms of EOR by nanofluids. Wettability alteration may be one of the most accepted mechanisms for nanofluid EOR while reduction in IFT and other mechanisms have not been fully proven. The main reason for the inconsistency among the experimental data might be lack of control experiments in which the effect of nanoparticles on oil recovery would be singled out.


2016 ◽  
Vol 864 ◽  
pp. 194-198 ◽  
Author(s):  
Mohd Shahrizan Moslan ◽  
Wan Rosli Wan Sulaiman ◽  
Abdul Razak Ismail ◽  
Mohd Zaidi Jaafar ◽  
Issham Ismail

Wettability alteration of rock by surfactant has been considered as feasible method for recovery of oil reservoirs by modifying the wettability of rock surface from oil-wet to water-wet condition. The impact of surfactant can be enhanced by adding nanoparticles. Cationic surfactant performed well in carbonate rock by forming ion pairs between cationic head and acidic component of the crude. Meanwhile, nanoparticles will form continuous wedge film between the liquid and solid surface. In this paper, Al2O3 and ZrO2 nanoparticles were used as enhanced oil recovery (EOR) agents. The impact of these two nanoparticles on contact angle and interfacial tension was studied. Besides that, adsorption Cetyltrimethylammonium Bromide (CTAB) surfactant on rock surface was also investigated. The results show a significant change in water-oil contact angle after application of surfactant and nanoparticles. Initial water-oil contact angle for 6 dolomites demonstrate oil-wet condition. Then, the dolomites were submerged in prepared solution for 48 hours. The result shows that, dolomites 2, 5 and 6 changes drastically to more water-wet condition with contact angle 56°, 40° and 47° respectively. For surfactant adsorption, the adsorption is very fast at the beginning. The adsorption rate after 5 minutes was 50 mg/g and after 60 minutes the adsorption rate was 310 mg/g. The adsorption rate slowed down after 60 minutes and after 180 minutes the adsorption rate was 315 mg/g in which the rate of adsorption achieve equilibrium. Nanoparticles retention test and Zeta potential shows that Al2O3 is more stable than ZrO2. The results for interfacial tension (IFT) also show a significant reduction. The IFT value reduces from 8.46 mN/m to 1.65 mN/m and 1.85 mN/m after the application of Al2O3 and ZrO2 nanofluids respectively


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2218-2231 ◽  
Author(s):  
Pinaki Ghosh ◽  
Kishore K. Mohanty

Summary Carbonate rocks are typically heterogeneous at many scales, leading to low waterflood recoveries. Polymers and gels cannot be injected into nonfractured low-permeability carbonates (k < 10 md) because pore throats are smaller than the polymers. Foams have the potential to improve both oil-displacement efficiency and sweep efficiency in such carbonate rocks. However, foams have to overcome two adverse conditions in carbonates: oil-wettability and low permeability. This study evaluates several cationic-foam formulations that combine wettability alteration and foaming in low-permeability oil-wet carbonate cores. Contact-angle experiments were performed on initially oil-wet media to evaluate the wettability-altering capabilities of the surfactant formulations. Static foam-stability tests were conducted to evaluate their foaming performance in bulk; foam-flow experiments (without crude oil) were performed in porous media to estimate the foam strength. Finally, oil-displacement experiments were performed with a crude oil after a secondary gasflood. Two different injection strategies were studied in this work: surfactant slug followed by gas injection and coinjection of surfactant with gas at a constant foam quality. Systematic study of oil-displacement experiments in porous media showed the importance of wettability alteration in increasing tertiary oil recovery for oil-wet media. Several blends of cationic, nonionic, and zwitterionic surfactants were used in the experiments. In-house-developed Gemini cationic surfactant GC 580 was able to alter the wettability from oil-wet to water-wet and also formed strong bulk foam. Static foam tests showed an increase in bulk foam stability with the addition of zwitterionic surfactants to GC 580. Oil-displacement experiments in oil-wet carbonate cores revealed that tertiary oil recovery with injection of a wettability-altering surfactant and foam can recover a significant amount of oil [approximately 25 to 52% original oil in place (OOIP)] over the secondary gasflood. The foam rheology in the presence of oil suggested propagation of only weak foam in oil-wet low-permeability carbonate cores.


Sign in / Sign up

Export Citation Format

Share Document