scholarly journals Multiple Molecular Pathways Are Influenced by Progranulin in a Neuronal Cell Model–A Parallel Omics Approach

2022 ◽  
Vol 15 ◽  
Author(s):  
Babykumari P. Chitramuthu ◽  
Víctor R. Campos-García ◽  
Andrew Bateman

Progranulin (PGRN) is critical in supporting a healthy CNS. Its haploinsufficiency results in frontotemporal dementia, while in experimental models of age-related neurodegenerative diseases, the targeted expression of PGRN greatly slows the onset of disease phenotypes. Nevertheless, much remains unclear about how PGRN affects its target cells. In previous studies we found that PGRN showed a remarkable ability to support the survival of NSC-34 motor neuron cells under conditions that would otherwise lead to their apoptosis. Here we used the same model to investigate other phenotypes of PGRN expression in NSC-34 cells. PGRN significantly influenced morphological differentiation, resulting in cells with enlarged cell bodies and extended projections. At a molecular level this correlated with pathways associated with the cytoskeleton and synaptic differentiation. Depletion of PGRN led to increased expression of several neurotrophic receptors, which may represent a homeostatic mechanism to compensate for loss of neurotrophic support from PGRN. The exception was RET, a neurotrophic tyrosine receptor kinase, which, when PGRN levels are high, shows increased expression and enhanced tyrosine phosphorylation. Other receptor tyrosine kinases also showed higher tyrosine phosphorylation when PGRN was elevated, suggesting a generalized enhancement of receptor activity. PGRN was found to bind to multiple plasma membrane proteins, including RET, as well as proteins in the ER/Golgi apparatus/lysosome pathway. Understanding how these various pathways contribute to PGRN action may provide routes toward improving neuroprotective therapies.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 667
Author(s):  
Eva Ramsay ◽  
Manuela Raviña ◽  
Sanjay Sarkhel ◽  
Sarah Hehir ◽  
Neil R. Cameron ◽  
...  

Inflammation is involved in the pathogenesis of several age-related ocular diseases, such as macular degeneration (AMD), diabetic retinopathy, and glaucoma. The delivery of anti-inflammatory siRNA to the retinal pigment epithelium (RPE) may become a promising therapeutic option for the treatment of inflammation, if the efficient delivery of siRNA to target cells is accomplished. Unfortunately, so far, the siRNA delivery system selection performed in dividing RPE cells in vitro has been a poor predictor of the in vivo efficacy. Our study evaluates the silencing efficiency of polyplexes, lipoplexes, and lipidoid-siRNA complexes in dividing RPE cells as well as in physiologically relevant RPE cell models. We find that RPE cell differentiation alters their endocytic activity and causes a decrease in the uptake of siRNA complexes. In addition, we determine that melanosomal sequestration is another significant and previously unexplored barrier to gene silencing in pigmented cells. In summary, this study highlights the importance of choosing a physiologically relevant RPE cell model for the selection of siRNA delivery systems. Such cell models are expected to enable the identification of carriers with a high probability of success in vivo, and thus propel the development of siRNA therapeutics for ocular disease.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 867
Author(s):  
Ling Wu ◽  
Joanna Brzostek ◽  
Shvetha Sankaran ◽  
Qianru Wei ◽  
Jiawei Yap ◽  
...  

Chimeric antigen receptor T cells (CAR-T) utilize T cell receptor (TCR) signaling cascades and the recognition functions of antibodies. This allows T cells, normally restricted by the major histocompatibility complex (MHC), to be redirected to target cells by their surface antigens, such as tumor associated antigens (TAAs). CAR-T technology has achieved significant successes in treatment of certain cancers, primarily liquid cancers. Nonetheless, many challenges hinder development of this therapy, such as cytokine release syndrome (CRS) and the efficacy of CAR-T treatments for solid tumors. These challenges show our inadequate understanding of this technology, particularly regarding CAR signaling, which has been less studied. To dissect CAR signaling, we designed a CAR that targets an epitope from latent membrane protein 2 A (LMP2 A) of the Epstein–Barr virus (EBV) presented on HLA*A02:01. Because of this, CAR and TCR signaling can be compared directly, allowing us to study the involvement of other signaling molecules, such as coreceptors. This comparison revealed that CAR was sufficient to bind monomeric antigens due to its high affinity but required oligomeric antigens for its activation. CAR sustained the transduced signal significantly longer, but at a lower magnitude, than did TCR. CD8 coreceptor was recruited to the CAR synapse but played a negligible role in signaling, unlike for TCR signaling. The distinct CAR signaling processes could provide explanations for clinical behavior of CAR-T therapy and suggest ways to improve the technology.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Soudeh Moghadasi ◽  
Marischa Elveny ◽  
Heshu Sulaiman Rahman ◽  
Wanich Suksatan ◽  
Abduladheem Turki Jalil ◽  
...  

AbstractRecently, mesenchymal stem/stromal cells (MSCs) due to their pro-angiogenic, anti-apoptotic, and immunoregulatory competencies along with fewer ethical issues are presented as a rational strategy for regenerative medicine. Current reports have signified that the pleiotropic effects of MSCs are not related to their differentiation potentials, but rather are exerted through the release of soluble paracrine molecules. Being nano-sized, non-toxic, biocompatible, barely immunogenic, and owning targeting capability and organotropism, exosomes are considered nanocarriers for their possible use in diagnosis and therapy. Exosomes convey functional molecules such as long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs), proteins (e.g., chemokine and cytokine), and lipids from MSCs to the target cells. They participate in intercellular interaction procedures and enable the repair of damaged or diseased tissues and organs. Findings have evidenced that exosomes alone are liable for the beneficial influences of MSCs in a myriad of experimental models, suggesting that MSC- exosomes can be utilized to establish a novel cell-free therapeutic strategy for the treatment of varied human disorders, encompassing myocardial infarction (MI), CNS-related disorders, musculoskeletal disorders (e.g. arthritis), kidney diseases, liver diseases, lung diseases, as well as cutaneous wounds. Importantly, compared with MSCs, MSC- exosomes serve more steady entities and reduced safety risks concerning the injection of live cells, such as microvasculature occlusion risk. In the current review, we will discuss the therapeutic potential of MSC- exosomes as an innovative approach in the context of regenerative medicine and highlight the recent knowledge on MSC- exosomes in translational medicine, focusing on in vivo researches.


2021 ◽  
Vol 14 (3) ◽  
pp. 257
Author(s):  
Elisabeth Singer ◽  
Lilit Hunanyan ◽  
Magda M. Melkonyan ◽  
Jonasz J. Weber ◽  
Lusine Danielyan ◽  
...  

Huntington’s disease (HD) is a monogenetic neurodegenerative disorder characterized by the accumulation of polyglutamine-expanded huntingtin (mHTT). There is currently no cure, and therefore disease-slowing remedies are sought to alleviate symptoms of the multifaceted disorder. Encouraging findings in Alzheimer’s and Parkinson’s disease on alpha-2 adrenoceptor (α2-AR) inhibition have shown neuroprotective and aggregation-reducing effects in cell and animal models. Here, we analyzed the effect of beditin, a novel α2- adrenoceptor (AR) antagonist, on cell viability and mHTT protein levels in cell models of HD using Western blot, time-resolved Foerster resonance energy transfer (TR-FRET), lactate dehydrogenase (LDH) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) cytotoxicity assays. Beditin decreases cytotoxicity, as measured by TUNEL staining and LDH release, in a neuronal progenitor cell model (STHdh cells) of HD and decreases the aggregation propensity of HTT exon 1 fragments in an overexpression model using human embryonic kidney (HEK) 293T cells. α2-AR is a promising therapeutic target for further characterization in HD models. Our data allow us to suggest beditin as a valuable candidate for the pharmaceutical manipulation of α2-AR, as it is capable of modulating neuronal cell survival and the level of mHTT.


2021 ◽  
Vol 10 (15) ◽  
pp. 3243
Author(s):  
Rita Del Pinto ◽  
Davide Grassi ◽  
Raffaella Bocale ◽  
Francesco Carubbi ◽  
Claudio Ferri ◽  
...  

With the demographic shift toward advanced ages, it is imperative to understand the biological mechanisms behind common, disabling age-related diseases such as cognitive impairment in its mild form to overt dementia. Hypertension, a major cardiovascular risk factor, is epidemiologically linked to vascular and Alzheimer-type dementia, with possible mechanisms being atherosclerotic macro- and microvascular damage leading to neuronal cell death, as well as proinflammatory events responsible for neurodegeneration. Nevertheless, there is currently a knowledge gap as to which population to target, what the diagnostics test, and how to manage early pathogenic events in order to prevent such a dramatic and disabling condition. While clinical trials data support the benefit of active BP control with antihypertensive medications on the risk of future cognitive impairment, hypotension appears to be related to accelerated cognitive decline in both the fit and the cognitively frail elderly. Dedicated, technologically advanced studies assessing the relation of BP with dementia are needed to clarify the pathophysiological mechanisms in the association before a tailored preventive, diagnostic, and therapeutic approach to one of the most widespread modern medical challenges becomes a reality.


2009 ◽  
Vol 297 (1) ◽  
pp. C133-C139 ◽  
Author(s):  
Shirley C. Chen ◽  
Ranvikram S. Khanna ◽  
Darrell C. Bessette ◽  
Lionel A. Samayawardhena ◽  
Catherine J. Pallen

Protein tyrosine phosphatase-α (PTPα) is a widely expressed receptor-type phosphatase that functions in multiple signaling systems. The actions of PTPα can be regulated by its phosphorylation on serine and tyrosine residues, although little is known about the conditions that promote PTPα phosphorylation. In this study, we tested the ability of several extracellular factors to stimulate PTPα tyrosine phosphorylation. The growth factors IGF-I and acidic FGF induced the highest increase in PTPα phosphorylation at tyrosine 789, followed by PMA and lysophosphatidic acid, while EGF had little effect. Further investigation of IGF-I-induced PTPα tyrosine phosphorylation demonstrated that this occurs through a novel Src family kinase-independent mechanism that does not require focal adhesion kinase, phosphatidylinositol 3-kinase, or MEK. We also show that PTPα physically interacts with the IGF-I receptor. In contrast to IGF-I-induced PTPα phosphorylation, this association does not require IGF-I. The interaction of PTPα and the IGF-I receptor is independent of PTPα catalytic activity, and expression of exogenous PTPα does not promote IGF-I receptor tyrosine dephosphorylation, indicating that PTPα does not act as an IGF-I receptor phosphatase. However, PTPα mediates IGF-I signaling, because IGF-I-stimulated fibroblast migration was reduced by ∼50% in cells lacking PTPα or in cells with mutant PTPα lacking the tyrosine 789 phosphorylation site. Our results suggest that PTPα tyrosine phosphorylation can occur in response to diverse stimuli and can be mediated by various tyrosine kinases. In the case of IGF-I, we propose that IGF-I-induced tyrosine 789 phosphorylation of PTPα, possibly catalyzed by the PTPα-associated IGF-I receptor tyrosine kinase, is required for efficient cell migration in response to this growth factor.


2007 ◽  
Vol 192 (3) ◽  
pp. 605-614 ◽  
Author(s):  
Fang Cai ◽  
Armen V Gyulkhandanyan ◽  
Michael B Wheeler ◽  
Denise D Belsham

The mammalian hypothalamus comprises an array of phenotypically distinct cell types that interpret peripheral signals of energy status and, in turn, elicits an appropriate response to maintain energy homeostasis. We used a clonal representative hypothalamic cell model expressing proopiomelanocortin (POMC; N-43/5) to study changes in AMP-activated protein kinase (AMPK) activity and glucose responsiveness. We have demonstrated the presence of cellular machinery responsible for glucose sensing in the cell line, including glucokinase, glucose transporters, and appropriate ion channels. ATP-sensitive potassium channels were functional and responded to glucose. The N-43/5 POMC neurons may therefore be an appropriate cell model to study glucose-sensing mechanisms in the hypothalamus. In N-43/5 POMC neurons, increasing glucose concentrations decreased phospho-AMPK activity. As a relevant downstream effect, we found that POMC transcription increased with 2.8 and 16.7 mM glucose. Upon addition of leptin, with either no glucose or with 5 mM glucose, we found that leptin decreased AMPK activity in N-43/5 POMC neurons, but had no significant effect at 25 mM glucose, whereas insulin decreased AMPK activity at only 5 mM glucose. These results demonstrate that individual hypothalamic neuronal cell types, such as the POMC neuron, can have distinct responses to peripheral signals that relay energy status to the brain, and will therefore be activated uniquely to control neuroendocrine function.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e52326 ◽  
Author(s):  
Gaëlle Gonzalez ◽  
Cyrielle Vituret ◽  
Attilio Di Pietro ◽  
Marc Chanson ◽  
Pierre Boulanger ◽  
...  

1989 ◽  
Vol 9 (7) ◽  
pp. 2934-2943
Author(s):  
M I Wahl ◽  
N E Olashaw ◽  
S Nishibe ◽  
S G Rhee ◽  
W J Pledger ◽  
...  

Platelet-derived growth factor (PDGF) stimulates the proliferation of quiescent fibroblasts through a series of events initiated by activation of tyrosine kinase activity of the PDGF receptor at the cell surface. Physiologically significant substrates for this or other growth factor receptor or oncogene tyrosine kinases have been difficult to identify. Phospholipase C (PLC), a key enzyme of the phosphoinositide pathway, is believed to be an important site for hormonal regulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate, which produces the intracellular second-messenger molecules inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. Treatment of BALB/c 3T3 cells with PDGF led to a rapid (within 1 min) and significant (greater than 50-fold) increase in PLC activity, as detected in eluates of proteins from a phosphotyrosine immunoaffinity matrix. This PDGF-stimulated increase in phosphotyrosine-immunopurified PLC activity occurred for up to 12 h after addition of growth factor to quiescent cells. Interestingly, the PDGF stimulation occurred at 3 as well as 37 degrees C and in the absence or presence of extracellular Ca2+. Immunoprecipitation of cellular proteins with monoclonal antibodies specific for three distinct cytosolic PLC isozymes demonstrated the presence of a 145-kilodalton isozyme, PLC-gamma (formerly PLC-II), in BALB/c 3T3 cells. Furthermore, these immunoprecipitation studies showed that PLC-gamma is rapidly phosphorylated on tyrosine residues after PDGF stimulation. The results suggest that mitogenic signaling by PDGF is coincident with tyrosine phosphorylation of PLC-gamma.


Sign in / Sign up

Export Citation Format

Share Document