scholarly journals Analysing Historical and Modelling Future Soil Temperature at Kuujjuaq, Quebec (Canada): Implications on Aviation Infrastructure

Forecasting ◽  
2022 ◽  
Vol 4 (1) ◽  
pp. 95-125
Author(s):  
Andrew C. W. Leung ◽  
William A. Gough ◽  
Tanzina Mohsin

The impact of climate change on soil temperatures at Kuujjuaq, Quebec in northern Canada is assessed. First, long-term historical soil temperature records (1967–1995) are statistically analyzed to provide a climatological baseline for soils at 5 to 150 cm depths. Next, the nature of the relationship between atmospheric variables and soil temperature are determined using a statistical downscaling model (SDSM) and National Centers for Environmental Prediction (NCEP), a climatological data set. SDSM was found to replicate historic soil temperatures well and used to project soil temperatures for the remainder of the century using climate model output Canadian Second Generation Earth System Model (CanESM2). Three Representative Concentration Pathway scenarios (RCP 2.6, 4.5 and 8.5) were used from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). This study found that the soil temperature at this location may warm at 0.9 to 1.2 °C per decade at various depths. Annual soil temperatures at all depths are projected to rise to above 0 °C for the 1997–2026 period for all climate scenarios. The melting soil poses a hazard to the airport infrastructure and will require adaptation measures.

2021 ◽  
Author(s):  
Antonina Kriuger ◽  
Alexander Reinbold ◽  
Martina Schubert-Frisius ◽  
Jörg Cortekar

<p>Cities are particularly vulnerable to climate change. At the same time, cities change slowly. Accordingly, preparatory measures to adapt to climate change have to be taken urgently. High-performance urban climate models with various applications can form the basis for prospective planning decisions, however, as of today no such model exists that can be easily applied outside of the scientific community. Therefore, the funding program Urban Climate Under Change [UC]<sup>2</sup> aims to further develop the new urban climate model PALM-4U (Parallelized Large-Eddy Simulation Model for Urban Applications) into a practice-oriented and user-friendly product that meets the needs of municipalities and other practical users in addition to scientific research.</p><p>Specifically, the high-performance model PALM-4U allows simulation of entire large cities comprising the area over 1.000 km<sup>2</sup> with a grid size of down to few meters. One of our goals within the project ProPolis is to design and test the practical implementation of PALM-4U in standard and innovative application fields which include thermal comfort (indices like PT, PET, UTCI), cold air balance (source areas, reach and others), local wind comfort (indices derived from medium winds and gusts) as well as dispersion of pollutants.</p><p>In close cooperation with our practice partners, we explore the potential of PALM-4U to support the urban planning processes in each specific application setting. Additionally, with development of the fit for purpose graphic user interface, manuals and trainings we aim to enable practitioners to apply the model for their individual planning questions and adaptation measures.</p><p>In our presentation, we will show an application case of PALM-4U in a major German city. We will investigate the effect of a planned development area on the local climate and the impact of different climate change adaptation measures (such as extensive vs. intensive green roofs). The comparative simulations of the current state and planning scenarios with integrated green and blue infrastructure should provide arguments for the municipal decision making in consideration of climate change aspects in a densely built-up environment, e.g. urban heat stress.</p>


2018 ◽  
Vol 9 (4) ◽  
pp. 657-671 ◽  
Author(s):  
Mirko Knežević ◽  
Ljubomir Zivotić ◽  
Nataša Čereković ◽  
Ana Topalović ◽  
Nikola Koković ◽  
...  

Abstract The impact of climate change on potato cultivation in Montenegro was assessed. Three scenarios (A1B, A1Bs and A2) for 2001–2030, 2071–2100 and 2071–2100, respectively, were generated by a regional climate model and compared with the baseline period 1961–1990. The results indicated an increase of temperature during the summer season from 1.3 to 4.8 °C in the mountain region and from 1 to 3.4 °C in the coastal zone. The precipitation decreased between 5 and 50% depending on the scenario, region and season. The changes in temperature and precipitation influenced phenology, yield and water needs. The impact was more pronounced in the coastal areas than in the mountain regions. The growing season was shortened 13.6, 22.9 and 29.7 days for A1B, A1Bs and A2, respectively. The increase of irrigation requirement was 4.0, 19.5 and 7.3 mm for A1B, A1Bs and A2, respectively. For the baseline conditions, yield reduction under rainfed cultivation was lower than 30%. For A1B, A1Bs and A2 scenarios, yield reductions were 31.0 ± 8.2, 36.3 ± 11.6 and 34.1 ± 10.9%, respectively. Possible adaptation measures include shifting of production to the mountain (colder) areas and irrigation application. Rainfed cultivation remains a viable solution when the anticipation of sowing is adopted.


2013 ◽  
Vol 13 (19) ◽  
pp. 9939-9970 ◽  
Author(s):  
M. Righi ◽  
J. Hendricks ◽  
R. Sausen

Abstract. We use the EMAC (ECHAM/MESSy Atmospheric Chemistry) global model with the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications) to quantify the impact of transport emissions (land transport, shipping and aviation) on the global aerosol. We consider a present-day (2000) scenario according to the CMIP5 (Climate Model Intercomparison Project Phase 5) emission data set developed in support of the IPCC (Intergovernmental Panel on Climate Change) Fifth Assessment Report. The model takes into account particle mass and number emissions: The latter are derived from mass emissions under different assumptions on the size distribution of particles emitted by the three transport sectors. Additional sensitivity experiments are performed to quantify the effects of the uncertainties behind such assumptions. The model simulations show that the impact of the transport sectors closely matches the emission patterns. Land transport is the most important source of black carbon (BC) pollution in the USA, Europe and the Arabian Peninsula, contributing up to 60–70% of the total surface-level BC concentration in these regions. Shipping contributes about 40–60% of the total aerosol sulfate surface-level concentration along the most-traveled routes of the northern Atlantic and northern Pacific oceans, with a significant impact (~ 10–20%) along the coastlines. Aviation mostly affects aerosol number, contributing about 30–40% of the particle number concentration in the northern midlatitudes' upper troposphere (7–12 km), although significant effects are also simulated at the ground, due to the emissions from landing and take-off cycles. The transport-induced perturbations to the particle number concentrations are very sensitive to the assumptions on the size distribution of emitted particles, with the largest uncertainties (about one order of magnitude) obtained for the land transport sector. The simulated climate impacts, due to aerosol direct and indirect effects, are strongest for the shipping sector, in the range of −222.0 to −153.3 mW m−2, as a consequence of the large impact of sulfate aerosol on low marine clouds and their optical properties.


2021 ◽  
Vol 164 (1-2) ◽  
Author(s):  
Bano Mehdi ◽  
Julie Dekens ◽  
Mathew Herrnegger

AbstractThe Ruhezamyenda catchment in Uganda includes a unique lake, Lake Bunyonyi, and is threatened by increasing social and environmental pressures. The COSERO hydrological model was used to assess the impact of climate change on future surface runoff and evapotranspiration in the Lake Bunyonyi catchment (381 km2). The model was forced with an ensemble of CMIP5 global climate model (GCM) simulations for the mid-term future (2041–2070) and for the far future (2071–2100), each with RCP4.5 and RCP8.5. In the Ruhezamyenda catchment, compared to 1971–2000, the median of all GCMs (for both RCPs) showed the mean monthly air temperature to increase by approximately 1.5 to 3.0 °C in the mid-term future and by roughly 2.0 to 4.5 °C in the far future. The mean annual precipitation is generally projected to increase, with future changes between − 25 and + 75% (RCP8.5). AET in the Lake Bunyonyi catchment was simulated to increase for the future by approximately + 8 mm/month in the median of all GCMs for RCP8.5 for the far future. The runoff for future periods showed much uncertainty, but with an overall increasing trend. A combination of no-regrets adaptation options in the five categories of: governance; communication and capacity development; water, soil, land management and livelihoods improvement; data management; and research, was identified and validated with stakeholders, who also identified additional adaptation actions based on the model results. This study contributes to improving scientific knowledge on the impacts of climate change on water resources in Uganda with the purpose to support adaptation.


Author(s):  
Kwasi Appeaning Addo ◽  
Michael Adeyemi

Climate change and its associated sea-level rise are expected to significantly affect vulnerable coastal communities. Although the extent of the impact will be localised, its assessment will adopt a monitoring approach that applies globally. The topography of the beach, the type of geological material and the level of human intervention will determine the extent of the area to be flooded and the rate at which the shoreline will move inland. Gleefe, a coastal community in Ghana, has experienced frequent flooding in recent times due to the increasing occurrence of storm surge and sea-level rise. This study used available geospatial data and field measurements to determine how the beach topography has contributed to the incidence of flooding at Gleefe. The topography is generally low-lying. Sections of the beach have elevations of around 1 m, which allows seawater to move inland during very high tide. Accelerated sea-level rise as predicted by the Intergovernmental Panel on Climate Change (IPCC) will destroy homes of the inhabitants and inundate the Densu wetlands behind the beach. Destruction of infrastructure will render the inhabitants homeless, whilst flooding of the wetlands will destroy the habitats of migratory birds and some endangered wildlife species such as marine turtle. Effective adaptation measures should be adopted to protect this very important coastal environment, the ecology of the wetlands and the livelihoods of the community dwellers.


2006 ◽  
Vol 19 (3) ◽  
pp. 359-365 ◽  
Author(s):  
Michael Winton

Abstract A technique for estimating surface albedo feedback (SAF) from standard monthly mean climate model diagnostics is applied to the 1% yr−1 carbon dioxide (CO2)-increase transient climate change integrations of 12 Intergovernmental Panel on Climate Change (IPCC) fourth assessment report (AR4) climate models. Over the 80-yr runs, the models produce a mean SAF at the surface of 0.3 W m−2 K−1 with a standard deviation of 0.09 W m−2 K−1. Relative to 2 × CO2 equilibrium run estimates from an earlier group of models, both the mean SAF and the standard deviation are reduced. Three-quarters of the model mean SAF comes from the Northern Hemisphere in roughly equal parts from the land and ocean areas. The remainder is due to Southern Hemisphere ocean areas. The SAF differences between the models are shown to stem mainly from the sensitivity of the surface albedo to surface temperature rather from the impact of a given surface albedo change on the shortwave budget.


2015 ◽  
Vol 9 (4) ◽  
pp. 83-92 ◽  
Author(s):  
Alieu Loum ◽  
Csaba Fogarassy

Increasingly, empirical evidences are substantiating the effects of climate change on agricultural production is a reality. In the early part of the 20th century many were skeptical about the so-called climate change that is due to global warming. The Intergovernmental Panel on Climate Change (IPCC, 2007) defines climate change as follows: “climate change refers to a change in the state of the climate that can be identified by changes in the mean or variability of its properties and that persists for extended periods, typically decades or longer” This study analyses the impact of climate change on cereals production (millet and maize) in the Gambia using a time series data for a period of 46 years (1960 – 2013) at an aggregate level to assess the relationship between climate (temperatures and rainfall,) and non-climate variables fertilizer, area planted respectively and yield. The specific objectives of the research are: (1) How climate change affects the expected cereals (Millet and Maize) output or yield in the Gambia. (2) How the level of output risk within cereals (Millet and Maize) farming is affected? In order to achieve these set objectives, the paper will adopt Just and Pope modified Ricardian production functions for climate change impact assessments (e.g., Chen et al. 2004), the paper will also control for the impacts of regular input factors in the production process. The study used a data set for the Gambia comprising variables relevant for cereals production and climate information from 1960 through 2013. There is strong evidence that climate will affects Maize and Millet; according to the analysis 77% and 44% of the variability in the yield of Maize and Millet respectively is explained by the climate and non-climate variables included in the model. Given the effects of climate variables on cereals production, and increasing climate change vulnerabilities on other food production section, the result of this paper will add voice to the growing call for policy makers to step up funding in research and development in climate change adaptation and mitigation. JEL classification: Q54


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Virgílio A. Bento ◽  
Andreia F. S. Ribeiro ◽  
Ana Russo ◽  
Célia M. Gouveia ◽  
Rita M. Cardoso ◽  
...  

AbstractThe impact of climate change on wheat and barley yields in two regions of the Iberian Peninsula is here examined. Regression models are developed by using EURO-CORDEX regional climate model (RCM) simulations, forced by ERA-Interim, with monthly maximum and minimum air temperatures and monthly accumulated precipitation as predictors. Additionally, RCM simulations forced by different global climate models for the historical period (1972–2000) and mid-of-century (2042–2070; under the two emission scenarios RCP4.5 and RCP8.5) are analysed. Results point to different regional responses of wheat and barley. In the southernmost regions, results indicate that the main yield driver is spring maximum temperature, while further north a larger dependence on spring precipitation and early winter maximum temperature is observed. Climate change seems to induce severe yield losses in the southern region, mainly due to an increase in spring maximum temperature. On the contrary, a yield increase is projected in the northern regions, with the main driver being early winter warming that stimulates earlier growth. These results warn on the need to implement sustainable agriculture policies, and on the necessity of regional adaptation strategies.


2014 ◽  
Vol 15 (4) ◽  
pp. 1517-1531 ◽  
Author(s):  
Gerhard Smiatek ◽  
Harald Kunstmann ◽  
Andreas Heckl

Abstract The impact of climate change on the future water availability of the upper Jordan River (UJR) and its tributaries Dan, Snir, and Hermon located in the eastern Mediterranean is evaluated by a highly resolved distributed approach with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) run at 18.6- and 6.2-km resolution offline coupled with the Water Flow and Balance Simulation Model (WaSiM). The MM5 was driven with NCEP reanalysis for 1971–2000 and with Hadley Centre Coupled Model, version 3 (HadCM3), GCM forcings for 1971–2099. Because only one regional–global climate model combination was applied, the results may not give the full range of possible future projections. To describe the Dan spring behavior, the hydrological model was extended by a bypass approach to allow the fast discharge components of the Snir to enter the Dan catchment. Simulation results for the period 1976–2000 reveal that the coupled system was able to reproduce the observed discharge rates in the partially karstic complex terrain to a reasonable extent with the high-resolution 6.2-km meteorological input only. The performed future climate simulations show steadily rising temperatures with 2.2 K above the 1976–2000 mean for the period 2031–60 and 3.5 K for the period 2070–99. Precipitation trends are insignificant until the middle of the century, although a decrease of approximately 12% is simulated. For the end of the century, a reduction in rainfall ranging between 10% and 35% can be expected. Discharge in the UJR is simulated to decrease by 12% until 2060 and by 26% until 2099, both related to the 1976–2000 mean. The discharge decrease is associated with a lower number of high river flow years.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1494
Author(s):  
Bernardo Teufel ◽  
Laxmi Sushama

Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.


Sign in / Sign up

Export Citation Format

Share Document