scholarly journals Moisture channels and pre-existing weather systems for East Asian rain belts

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tat Fan Cheng ◽  
Mengqian Lu ◽  
Lun Dai

AbstractRain belts in East Asia frequently pose threats to human societies and natural systems. Advances in a skillful forecast on heavy precipitation require a deeper understanding of the preconditioned environments and the hydrologic cycle. Here, we disentangle 15 dominant moisture channels along four corridors reaching the Somali Jet, South Asia, Bay of Bengal, and Pacific basin for the warm-season rain belts. Among them, the Somali and South Asian channels were underappreciated in the literature. The results also highlight the importance of terrestrial moisture sources, and the close relationship between the moisture pathways and rain belts’ characteristics. Back-tracing the weather within a 2-week lead time reveals the pre-existing weather systems and circumglobal wave trains, that govern the moisture channels. Findings from this work develop a better understanding of East Asian rain belts’ water cycle, and may offer insights into model evaluation and heavy rainfall prediction at a longer lead time.

2021 ◽  
Author(s):  
Ping Liang ◽  
Guangtao Dong ◽  
Huqiang Zhang ◽  
Mei Zhao ◽  
Yue Ma

<p>Atmospheric Rivers (ARs), referring to long and narrow bands of enhanced water vapor transport, mainly from the tropics into the mid-latitudes in the low atmosphere. They often contribute to heavy rainfall generations outside the tropics. However, there is a lack of such AR studies in East Asia and it is still unclear how ARs act on different time scales during the boreal summer when frequent heavy precipitation events take place over the region. In this study, climatological ARs and their evolutions on both synoptic and sub-seasonal time scales associated with heavy rainfall events over the Yangtze Plain in China are investigated. Furthermore, its predictability is assessed by examining hindcast skills from an operational coupled seasonal forecast model. Results show that ARs embedded within the South Asian monsoon and Somali cross-equatorial flow provide a favorable background for steady moisture supply of summer rainfall into East Asia. We can call this favorable background as a climatological East Asian AR which has close connections with seasonal cycle and climatological intra-seasonal oscillation (CISO) of rainfall in the Yangtze Plain during its Meiyu season. The East Asian AR is also influenced by anomalous anti-cyclonic circulations over the tropical West Pacific when heavy rainfall events occur over the Yangtze Plain. Different from orography-induced precipitation, ARs leading to heavy rainfall over the Yangtze Plain are linked with the intrusions of cold air from its north. The major source of ARs responsible for heavy precipitation events over the Yangtze Plain appears to originate from tropical West Pacific on both synoptic and sub-seasonal time scales. By analyzing 23-yr hindcasts for May-June-July with start date of 1 May, we show that the current operational coupled seasonal forecast system of the Australian Bureau of Meteorology (named as ACCESS-S1) has skillful rainfall forecasts at lead-time of 0 month (i.e. forecasting May monthly mean with initial conditions on 1 May), but the skill degrades significantly at longer lead time. Nevertheless, the model shows skills in predicting the variations of low-level moisture transport affecting the Yangtze River at longer lead time, suggesting that the ARs influencing summer monsoon rainfall in the East Asian region are likely to be more predictable than rainfall itself. This provides a potential of utilizing the skill from the coupled forecast system in predicting ARs to guide its rainfall forecasts in the East Asian summer season at longer lead time.</p>


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Huan Zhang ◽  
Johannes P. Werner ◽  
Elena García-Bustamante ◽  
Fidel González-Rouco ◽  
Sebastian Wagner ◽  
...  

2014 ◽  
Vol 15 (5) ◽  
pp. 1778-1793 ◽  
Author(s):  
Yiwen Mei ◽  
Emmanouil N. Anagnostou ◽  
Efthymios I. Nikolopoulos ◽  
Marco Borga

Abstract Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to hazards such as flash floods, shallow landslides, and debris flows, triggered by heavy precipitation events (HPEs). In situ observations over mountainous areas are limited, but currently available satellite precipitation products can potentially provide the precipitation estimation needed for hydrological applications. In this study, four widely used satellite-based precipitation products [Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42, version 7 (3B42-V7), and in near–real time (3B42-RT); Climate Prediction Center (CPC) morphing technique (CMORPH); and Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks (PERSIANN)] are evaluated with respect to their performance in capturing the properties of HPEs over different basin scales. Evaluation is carried out over the upper Adige River basin (eastern Italian Alps) for an 8-yr period (2003–10). Basin-averaged rainfall derived from a dense rain gauge network in the region is used as a reference. Satellite precipitation error analysis is performed for warm (May–August) and cold (September–December) season months as well as for different quantile ranges of basin-averaged precipitation accumulations. Three error metrics and a score system are introduced to quantify the performances of the various satellite products. Overall, no single precipitation product can be considered ideal for detecting and quantifying HPE. Results show better consistency between gauges and the two 3B42 products, particularly during warm season months that are associated with high-intensity convective events. All satellite products are shown to have a magnitude-dependent error ranging from overestimation at low precipitation regimes to underestimation at high precipitation accumulations; this effect is more pronounced in the CMORPH and PERSIANN products.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1699 ◽  
Author(s):  
Kumaraswamy Ponnambalam ◽  
S. Jamshid Mousavi

This paper presents basic definitions and challenges/opportunities from different perspectives to study and control water cycle impacts on society and vice versa. The wider and increased interactions and their consequences such as global warming and climate change, and the role of complex institutional- and governance-related socioeconomic-environmental issues bring forth new challenges. Hydrology and integrated water resources management (IWRM from the viewpoint of an engineering planner) do not exclude in their scopes the study of the impact of changes in global hydrology from societal actions and their feedback effects on the local/global hydrology. However, it is useful to have unique emphasis through specialized fields such as hydrosociology (including the society in planning water projects, from the viewpoint of the humanities) and sociohydrology (recognizing the large-scale impacts society has on hydrology, from the viewpoint of science). Global hydrological models have been developed for large-scale hydrology with few parameters to calibrate at local scale, and integrated assessment models have been developed for multiple sectors including water. It is important not to do these studies with a silo mindset, as problems in water and society require highly interdisciplinary skills, but flexibility and acceptance of diverse views will progress these studies and their usefulness to society. To deal with complexities in water and society, systems modeling is likely the only practical approach and is the viewpoint of researchers using coupled human–natural systems (CHNS) models. The focus and the novelty in this paper is to clarify some of these challenges faced in CHNS modeling, such as spatiotemporal scale variations, scaling issues, institutional issues, and suggestions for appropriate mathematical tools for dealing with these issues.


2020 ◽  
Author(s):  
Jeong Sang ◽  
Maeng-Ki Kim ◽  
William K. M. Lau ◽  
Kyu-Myong Kim

<p><span>In this paper, we have investigated the snow darkening effects by light-absorbing aerosols on the regional changes of the water cycle over the Eurasian continent using the NASA GEOS-5 Model with aerosol tracers and a state-of-the-art snow darkening module, the Goddard SnoW Impurity Module (GOSWIM) for the land surface. Two sets of ten-member ensemble experiments for 10-years were carried out forced by prescribed sea surface temperature (2002-2011) with different atmospheric initial conditions, with and without SDE, respectively. Results show that SDE can exert a significant regional influence in partitioning the contributions of evaporative and advective processes on the hydrological cycle, during spring and summer season. Over western Eurasia, SDE-induced rainfall increase during early spring can be largely explained by the increased evaporation from snowmelt. Rainfall, however, decreases in early summer due to the reduced evaporation as well as moisture divergence and atmospheric subsidence associated with the development of an anomalous mid- to upper tropospheric anticyclonic circulation. On the other hand, in the East Asian monsoon region, moisture advection from adjacent ocean is a main contributor to rainfall increase in the melting season. Warmer land-surface caused by earlier snowmelt and subsequent drying further increases moisture transport and convergence significantly enhancing rainfall over the region. This findings suggest that the SDE may play an important role in leading to hotter and drier summer over western Eurasia, through coupled land-atmosphere interaction, while enhancing East Asian summer monsoonal precipitation via enhanced land-ocean thermal contrast and moisture transport due to SDE-induced warmer Eurasian continent.</span></p><p> </p><p>This work was supported by the Korea Meteorological Administration Research and Development Program under grant KMI2018-03410.</p>


2005 ◽  
Vol 133 (8) ◽  
pp. 2163-2177 ◽  
Author(s):  
Jason E. Nachamkin ◽  
Sue Chen ◽  
Jerome Schmidt

Abstract Numerical forecasts of heavy warm-season precipitation events are verified using simple composite collection techniques. Various sampling methods and statistical measures are employed to evaluate the general characteristics of the precipitation forecasts. High natural variability is investigated in terms of its effects on the relevance of the resultant statistics. Natural variability decreases the ability of a verification scheme to discriminate between systematic and random error. The effects of natural variability can be mitigated by compositing multiple events with similar properties. However, considerable sample variance is inevitable because of the extreme diversity of mesoscale precipitation structures. The results indicate that forecasts of heavy precipitation were often correct in that heavy precipitation was observed relatively close to the predicted area. However, many heavy events were missed due in part to the poor prediction of convection. Targeted composites of the missed events indicate that a large percentage of the poor forecasts were dominated by convectively parameterized precipitation. Further results indicate that a systematic northward bias in the predicted precipitation maxima is related to the deficits in the prediction of subsynoptically forced convection.


2017 ◽  
Vol 32 (4) ◽  
pp. 1675-1694 ◽  
Author(s):  
Qiaoping Li ◽  
Song Yang ◽  
Tongwen Wu ◽  
Xiangwen Liu

Abstract Predictability of East Asian cold surges is studied using daily data from the hindcasts of 45-day integrations by the NCEP Climate Forecast System version 2 (CFSv2). Prediction skills of the CFSv2 in forecasting cold surges, their annual variation, and their physical links to large-scale atmospheric circulation patterns are examined. Results show that the climatological characteristics of the East Asian winter monsoon can be reasonably reproduced by the CFSv2. The model can well capture the frequency, intensity, and location of cold surges at a lead time of about two weeks. Obviously, fewer-than-observed cold surge days are found in the predictions when the lead time is above 14 days. The spatiotemporal evolutions of high-, mid-, and low-level circulation patterns during cold surge occurrences are all accurately indicated in the CFSv2 prediction. Except for precipitation, the other variables associated with cold surges, such as geopotential height, wind, sea level pressure, and surface air temperature, exhibit higher skills. The lead time of skillful prediction of precipitation is limited to around 1 week, with systematic wet biases over the South China Sea, the Philippine Islands, and the northwest Pacific, but dry biases over India, the Indo-China Peninsula, and most high-latitude regions. Wave train–like patterns of geopotential height and wind differ distinguishably when cold surges occur in northern and southern regions (using 35°N as the dividing line), and the CFSv2 gives a consistent prediction to these anomalous patterns. A weaker-than-observed Siberian high and weaker northerly winds over eastern China are found in the predictions especially at longer lead times.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Dechao Sun ◽  
Jiali Wu ◽  
Hong Huang ◽  
Renfang Wang ◽  
Feng Liang ◽  
...  

Short-time heavy rainfall is a kind of sudden strong and heavy precipitation weather, which seriously threatens people’s life and property safety. Accurate precipitation nowcasting is of great significance for the government to make disaster prevention and mitigation decisions in time. In order to make high-resolution forecasts of regional rainfall, this paper proposes a convolutional 3D GRU (Conv3D-GRU) model to predict the future rainfall intensity over a relatively short period of time from the machine learning perspective. Firstly, the spatial features of radar echo maps with different heights are extracted by 3D convolution, and then, the radar echo maps on time series are coded and decoded by using GRU. Finally, the trained model is used to predict the radar echo maps in the next 1-2 hours. The experimental results show that the algorithm can effectively extract the temporal and spatial features of radar echo maps, reduce the error between the predicted value and the real value of rainfall, and improve the accuracy of short-term rainfall prediction.


2022 ◽  
Author(s):  
Ruping Mo ◽  
Hai Lin ◽  
Frédéric Vitart

Abstract Atmospheric rivers (ARs) are long and narrow bands of enhanced water vapour flux concentrated in the lower troposphere. Many studies have documented the important role of cold-season ARs in producing heavy precipitation and triggering extreme flooding in many parts of the world. However, relatively little research has been conducted on the warm-season ARs and their impacts on extreme heatwave development. Here we show an anomalous warm-season AR moving across the North Pacific and its interaction with the western North American heatwave in late June 2021. We call it an “oriental express’’ to highlight its capability to transport tropical moisture to the west coast of North America from sources in Southeast Asia. Its landfall over the Alaska Panhandle lasted for more than two days and resulted in significant spillover of moisture into western Canada. We provide evidence that the injected water vapour was trapped under the heat dome and may have formed a positive feedback mechanism to regulate the heatwave development in western North America.


Sign in / Sign up

Export Citation Format

Share Document