scholarly journals Research on Plastic Zone Evolution Law of Surrounding Rock of Gob-Side Entry Retaining under Typical Roof Conditions in Deep Mine

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jingke Wu ◽  
Yun Dong ◽  
Yang Jiang ◽  
Yushun Yang ◽  
Huasheng Sun ◽  
...  

To solve the control problem of the surrounding rock of gob-side entry retaining under typical roof conditions in deep mines, we conduct theoretical analysis, numerical simulation, and actual measurements. Starting from the plastic zone of the surrounding rock, the serious damage area, the degree and scope of damage, and the dynamic evolution process of the surrounding rock of the gob-side entry retaining are systematically analyzed under four typical roof conditions in deep mines; the expansion and evolution laws of the plastic zone of the surrounding rock are expounded; and a key control technology is proposed. The results indicate that (1) the plastic failure of surrounding rock was concentrated mainly on the coal side and on the floor, especially in the filling body. The plastic zone of the surrounding rock of the gob-side entry retaining with the thick immediate roof was widely distributed and deep, but the plastic failure of the filling body was not obvious. The plastic failure of the surrounding rock of the gob-side entry retaining with the compound roof was mainly concentrated on the roof, filling body, and floor of the filling area. (2) According to the typical roof conditions of the deep gob-side entry retaining, the order of the degree of damage to the surrounding rock was as follows: thick immediate roof, compound roof, thin immediate roof, and thick-hard roof. (3) A “multisupport structure” control system is proposed for the gob-side entry retaining in a deep mine, including measures for enhancing the bearing performance of the anchorage system, increasing the strength of the cataclastic coal-rock mass, enhancing the bearing capacity of the filling body, and increasing the bearing capacity on the tunnel side. The proposed technology was applied to the deep gob-side entry retaining project in the east area of Panyi Mine, and it effectively fulfilled the reuse requirements of gob-side entry retaining in deep mines.

2012 ◽  
Vol 204-208 ◽  
pp. 4481-4485
Author(s):  
Bin Wang ◽  
Fu Jun Zhao ◽  
Wen Bin Peng

The current researches on bolt length are rarely concerned with self-bearing characteristics of anchorage surrounding rock,its stress response is seldom used to analyze the bolt effective length. Tangential stress σθ of surrounding rock is sensitive to mechanical variation of surrounding rock plastic failure fields. When surrounding rock bolted, the distribution curve of σθ presents internal and external peak values from the surface rock to the deep rock, which is verified by numerical simulation. Internal peak value of σθ curve increases with the bolt length, which means the bearing capacity of surrounding rock in plastic failure division is improved, correspondingly, external peak value decreases which shows the supporting behavior of the deep rock is weakened. The results of numerical simulations prove that there exists an effective value of bolt length. If bolt length beyond it, the bearing capacity of anchorage surrounding rock cannot be improved obviously.


2021 ◽  
Vol 11 (9) ◽  
pp. 4125
Author(s):  
Zhe Xiang ◽  
Nong Zhang ◽  
Zhengzheng Xie ◽  
Feng Guo ◽  
Chenghao Zhang

The higher strength of a hard roof leads to higher coal pressure during coal mining, especially under extra-thick coal seam conditions. This study addresses the hard roof control problem for extra-thick coal seams using the air return roadway 4106 (AR 4106) of the Wenjiapo Coal Mine as a case study. A new surrounding rock control strategy is proposed, which mainly includes 44 m deep-hole pre-splitting blasting for stress releasing and flexible 4-m-long bolt for roof supporting. Based on the new support scheme, field tests were performed. The results show that roadway support failure in traditional scenarios is caused by insufficient bolt length and extensive rotary subsidence of the long cantilever beam of the hard roof. In the new proposed scheme, flexible 4-m-long bolts are shown to effectively restrain the initial expansion deformation of the top coal. The deflection of the rock beam anchored by the roof foundation are improved. Deep-hole pre-splitting blasting effectively reduces the cantilever distance of the “block B” of the voussoir beam structure. The stress environment of the roadway surrounding rock is optimized and anchorage structure damage is inhibited. The results provide insights regarding the safe control of roadway roofs under extra-thick coal seam conditions.


2021 ◽  
pp. 014459872110093
Author(s):  
Wei Zhang ◽  
Jiawei Guo ◽  
Kaidi Xie ◽  
Jinming Wang ◽  
Liang Chen ◽  
...  

In order to mine the coal seam under super-thick hard roof, improve the utilization rate of resources and prolong the remaining service life of the mine, a case study of the Gaozhuang Coal Mine in the Zaozhuang Mining Area has been performed in this paper. Based on the specific mining geological conditions of ultra-close coal seams (#3up and #3low coal seams), their joint systematic analysis has been performed, with the focus made in the following three aspects: (i) prevention of rock burst under super-thick hard roof, (ii) deformation control of surrounding rock of roadways in the lower coal seam, and (iii) fire prevention in the goaf of working face. Given the strong bursting tendency observed in upper coal seam and lower coal seam, the technology of preventing rock burst under super-thick hard roof was proposed, which involved setting of narrow section coal pillars to protect roadways and interleaving layout of working faces. The specific supporting scheme of surrounding rock of roadways in the #3low1101 working face was determined, and the grouting reinforcement method of local fractured zones through Marithan was further proposed, to ensure the deformation control of surrounding rock of roadways in lower coal seams. The proposed fire prevention technology envisaged goaf grouting and spraying to plug leaks, which reduced the hazard of spontaneous combustion of residual coals in mined ultra-close coal seams. The technical and economic improvements with a direct economic benefit of 5.55 million yuan were achieved by the application of the proposed comprehensive technical support. The research results obtained provide a theoretical guidance and technical support of safe mining strategies of close coal seams in other mining areas.


2013 ◽  
Vol 838-841 ◽  
pp. 1884-1890 ◽  
Author(s):  
Guang Long Qu ◽  
Yan Fa Gao ◽  
Liu Yang ◽  
Bin Jing Xu ◽  
Guo Lei Liu ◽  
...  

Compared with I-shaped and U-shaped supports in soft rock roadway, concrete-filled steel tubular (CFST) support, as a new supporting form, has stronger bearing capacity with reasonable price. So it is becoming more and more popular in roadway supporting of coal mine in China. In this article, the surrounding rock in soft rock roadway was classified into three different types: hard rock in deep coal mine, soft surrounding rock, extremely soft surrounding rock. And, according to the characteristics of deformation failure of the CFST support and the surrounding rock in the industrial tests, three different strength assessments, including assessment of axial compressive strength, assessment of lateral flexural performance, assessment of hardening rate of core concrete, were proposed through mechanical analysis and laboratory tests for the three different types of the surrounding rock, respectively. Moreover, aimed to insufficient flexural strength of the support or low hardening rate of the core concrete in some of the roadway supporting, strengthening lateral flexural performance or making early strength concrete was necessary for the above unfavorable situations. The laboratory test results showed that the ultimate bearing capacity for the CFST support with φ194*8mm of steel tube reinforced by φ38mm round steel was 31% greater than that of the unreinforced one, 177% greater than that of the U-shaped one with equivalent weight per unit length.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jin Zhang ◽  
Chuanhao Xi ◽  
Qian Zhang ◽  
Mengxue Wang

Carbonaceous slate is heterogeneous and anisotropic, which has a great influence on the stability of tunnel. In this paper, by means of laboratory test, field measurement, and numerical simulation, the surrounding rock stability and plastic zone distribution characteristics of the carbonaceous slate tunnel at different intersection angles are analyzed. First, combined with the Haibaluo tunnel project, Brazilian splitting and uniaxial compression tests of jointed carbonaceous slate are performed. The test results show that the tensile strength of carbonaceous slate is related to joint dip angle. When the joint angle is 0°, the tensile strength is the largest and decreases with the increase of the joint angle. The uniaxial strength of rock decreases first and then increases. Based on the discrete fracture network (DFN) technology, a calculation model is established. The calculation results show that the maximum displacement is 0.45 m, when the dip angle of the surrounding rock joint is 45°. The field measurement also shows that the dip angle of the surrounding rock joint has an important influence on the distribution of the plastic zone. When the joint dip angle is 45°, the plastic zone develops most strongly.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Denghong Chen ◽  
Chao Li ◽  
Xinzhu Hua ◽  
Xiaoyu Lu ◽  
Yongqiang Yuan ◽  
...  

Taking the occurrence conditions of the hard main roof in the deep 13-1 coal mining roadway in Huainan mining area as the research object, based on the mechanical parameters of the surrounding rock and the stress state of the main roof obtained by numerical simulation, a simply supported beam calculation model was established based on the damage factor D, main roof support reaction RA, RB, and critical range C (9 m) and B (7 m) at the elastoplastic junction of the solid coal side and mining face side (hereinafter referred to as “junction”). Considering that the damage area still has a large bearing capacity, the vertical stress of the main roof at the junction is K1γH (0.05γh, 0.15γh, and 0.25γh) and K2γH (0.01γh, 0.10γh, and 0.2γh). The maximum deflection is 21 mm, 324 mm, and 627.6 mm, respectively. According to the criterion of tensile failure, the maximum bending moment of the top beam is 209 mN·m at the side of the working face 3.1 m away from the roadway side when K1 = 0.15 and K2 = 0.10, and the whole hard main roof is in tensile failure except the junction. To control the stability of the top beam and simplify the supporting reaction to limit the deformation of the slope angle, RC and RD are used to construct the statically indeterminate beam. By adding an anchor cable and advance self-moving support to the roadway side angle, the problem of difficult control of the surrounding rock with a large deformation of the side angle roof is solved, which provides a reference for roof control under similar conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Peng Wu ◽  
Yanlong Chen ◽  
Liang Chen ◽  
Xianbiao Mao ◽  
Wei Zhang

Based on the Mohr–Coulomb criterion, a new analytical solution of a circular opening under nonuniform pressure was presented, which considered rock dilatancy effect and elastic-brittle-plastic failure characteristics. In the plastic zone, the attenuation of Young’s modulus was considered using a radius-dependent model (RDM), and solution of the radius and radial displacement of plastic zone was obtained. The results show that many factors have important impact on the response of the surrounding rock, including lateral pressure coefficient, dilation coefficient, buried depth, and Young’s modulus attenuation. Under nonuniform pressure condition, the distribution of plastic zone and deformation around the opening show obvious nonuniform characteristic: with the increasing of lateral pressure coefficient, the range of plastic zone and deformation decrease gradually at side, while they increase at roof and floor, and the location of the maximum value of support and surrounding rock response curve transfers from side to roof. Based on the analytical results and engineering practice, an optimization method of support design was proposed for the circular opening under nonuniform pressure.


2021 ◽  
Vol 13 (23) ◽  
pp. 13280
Author(s):  
Hai Wu ◽  
Qian Jia ◽  
Weijun Wang ◽  
Nong Zhong ◽  
Yiming Zhao

Taking a deep-mine horizontal roadway in inclined strata as our research object, the true triaxial simulation technique was used to establish a model of the inclined strata and carry out high-stress triaxial loading experiments. The experimental results show that the deformation of surrounding rock in the roadway presents heterogeneous deformation characteristics in time and space: the deformation of the surrounding rock at different positions of the roadway occurs at different times. In the process of deformation of the surrounding rock, deformation and failure occur at the floor of the roadway first, followed by the lower shoulder-angle of the roadway, and finally the rest of the roadway. The deformation amount in the various areas is different. The floor heave deformation of the roadway floor is the greatest and shows obvious left-right asymmetry. The deformation of the higher side is greater than that of the lower side. The model disassembly shows that the development of cracks in the surrounding rock is characterized by more cracks on the higher side and fewer cracks on the lower side but shows larger cracks across the width. The experimental results of high-stress deformation of the surrounding rock are helpful in the design of supports, the reinforcement scheme, and the parameter optimization of roadways in high-stress-inclined rock, and to improve the stability control of deep high-stress roadways.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Hai Shi ◽  
Mingzhou Bai

With the conformal mapping function provided by Verruijt, the outland of a noncircular tunnel can be mapped to a circular unit in the complex plane and then spread the analytic function into a Laurent series. The stress unified solution of oval and horseshoe cross section can be determined using Muskhelishvili’s complex variables function method. Subsequently, the solution can be taken into the Griffith strength failure criterion and determine the scale and shape of plastic zone in the tunnel surrounding rock. Aiming at the critical safety thickness between a concealed cave and tunnel in the karst area and determining whether the plastic zone of tunnel surrounding rock is connected with the plastic zone of cave as a judgment standard, the model of critical safety thickness among the concealed caves and tunnels is established. The numerical model is established in comparison with the computing method of rock plate critical safety thickness in actual engineering based on the Doumo tunnel engineering of Shanghai-Kunming (Guizhou segment) high-speed railway. The following conclusions can be drawn: the analytical approximation method has less indexes, and the output of this method is approximately close to actual engineering and numerical analysis, in which it is reliable and rational.


Sign in / Sign up

Export Citation Format

Share Document