scholarly journals Basalt Fibers in Modified Whisker Reinforced Cementitious Composites

Author(s):  
Mehran Khan ◽  
Mingli Cao ◽  
Hongmei Ai ◽  
Abasal Hussain

The calcium carbonate whisker (CW) and basalt fiber are gaining popularity due to its enhanced mechanical properties in composites. Also, the short and long fibers provide bridging role and resistance against cracking from micro- to macro-scale, respectively. The usage of long and short hybrid basalt fiber along with addition of CW in cement-based composites is still a research gap. In this work, experimental behavior of CW basalt hybrid fiber reinforced mortar is considered with various content and length (3 mm, 6 mm, 12 mm, and 20 mm) of hybrid basalt fibers. In addition to this, synergy performance index is determined to quantitatively evaluate the positive interaction of hybrid basalt fiber in cementitious materials. The strengthening effect of whiskers and basalt fibers are also studied using scanning electron microscopy. The CW with various basalt fiber contents having different length of hybrid basalt fiber is used. It was found that the four various length of hybrid basalt fiber together with CW in cement mortar exhibited enhanced compressive, flexural, and split tensile strength than that of pure mortar and single length basalt fiber reinforced cementitious mortar. The results of synergy performance index showed similar trend with the experimental results. The strengthening effect caused by step by step crack arresting mechanism was also observed in cementitious material.

2021 ◽  
Vol 5 (4) ◽  
pp. 100
Author(s):  
Anjum Saleem ◽  
Luisa Medina ◽  
Mikael Skrifvars

New technologies in the automotive industry require lightweight, environment-friendly, and mechanically strong materials. Bast fibers such as kenaf, flax, and hemp reinforced polymers are frequently used composites in semi-structural applications in industry. However, the low mechanical properties of bast fibers limit the applications of these composites in structural applications. The work presented here aims to enhance the mechanical property profile of bast fiber reinforced acrylic-based polyester resin composites by hybridization with basalt fibers. The hybridization was studied in three resin forms, solution, dispersion, and a mixture of solution and dispersion resin forms. The composites were prepared by established processing methods such as carding, resin impregnation, and compression molding. The composites were characterized for their mechanical (tensile, flexural, and Charpy impact strength), thermal, and morphological properties. The mechanical performance of hybrid bast/basalt fiber composites was significantly improved compared to their respective bast fiber composites. For hybrid composites, the specific flexural modulus and strength were on an average about 21 and 19% higher, specific tensile modulus and strength about 31 and 16% higher, respectively, and the specific impact energy was 13% higher than bast fiber reinforced composites. The statistical significance of the results was analyzed using one-way analysis of variance.


2017 ◽  
Vol 52 (14) ◽  
pp. 1907-1914 ◽  
Author(s):  
Yang Zhiming ◽  
Liu Jinxu ◽  
Feng Xinya ◽  
Li Shukui ◽  
Xu Yuxin ◽  
...  

Basalt fiber reinforced aluminum matrix composites with different fiber contents (i.e. 0 wt%, 10 wt%, 30 wt% and 50 wt%) were prepared by hot-press sintering. Microstructure analysis indicates that basalt fibers are uniformly distributed in 10% basalt fiber reinforced aluminum matrix composite. The interfacial bonding between basalt fibers and aluminum matrix is good, and there is no interface reaction between basalt fiber and aluminum matrix. Quasi-static tensile, quasi-static compression and dynamic compression properties of basalt fiber reinforced aluminum composites were studied, and the influences of basalt fiber content on mechanical properties were discussed. Meanwhile, the failure mechanisms of basalt fiber reinforced aluminum matrix composites with different fiber content were analyzed.


2018 ◽  
Vol 766 ◽  
pp. 252-257 ◽  
Author(s):  
Parinya Chakartnarodom ◽  
Wichit Prakaypan ◽  
Pitcharat Ineure ◽  
Nuntaporn Kongkajun ◽  
Nutthita Chuankrerkkul

The aim of this work was to study the feasibility of using basalt fibers as the reinforcement phase in fiber-cement products which was the fiber-reinforced construction materials used for roof, wall, ceiling, and floor applications. The feasibility study included (1) the alkaline resistant test of the basalt fibers by soaking the basalt fibers in 1 N Ca(OH)2up to 28 days, and (2) the mechanical test based on ASTM C1185 standard on the fiber-cement board that used basalt fibers as a reinforcement phase. Scanning electron microscope (SEM) and x-ray diffractometer (XRD) were used to characterize the basalt fibers after alkaline resistant test. The basalt-fiber reinforced cement board was produced on the industrial level by using Hatschek process.From the alkaline resistant test, basalt fibers had well alkaline resistant. From the mechanical test, the modulus of rupture (MOR) of basalt-fiber reinforced cement boards passed the requirement of TIS 1427-2540 and ASTM C1186 standard. Therefore, basalt fibers could be considered as a good candidate for using as a reinforcement phase in the fiber-cement products.


2011 ◽  
Vol 287-290 ◽  
pp. 1197-1200 ◽  
Author(s):  
Zhu Ding ◽  
Zhan Xi Lu ◽  
Yuan Li

Phosphate based binders are high early strength materials with a short setting time. Usually, they are used as rapid repair material for concrete structures. The feasibility of a basalt fiber reinforced inorganic binder for strengthening concrete was studied. We successfully compounded suitable phosphate binder (PB) for concrete strengthening. In the current paper, phosphate binder was to adjusted to has excellent workability, suitable setting time and fluidity. Compressive strength of phosphate binder mortar, bonding strength between PB and Portland cement mortar, and strengthening effect of PB sticked basalt fiber on concrete beam were measured. Results showed that PB has excellent adhesion with Portland cement mortar. The strengthening effect of basalt fiber reinforced PB composite on concrete beam is evident. It is feasible that concrete strengthening by basalt fiber reinforced inorganic adhesive.


2021 ◽  
Vol 28 (1) ◽  
pp. 489-498
Author(s):  
Yongjun Zhang ◽  
Wenbo Luo ◽  
Xiu Liu

Abstract To study the influence of basalt fibers on the viscoelastic mechanical properties of asphalt concrete (AC) mixtures, unconfined compressive dynamic modulus tests were performed on styrene–butadiene–styrene (SBS)-modified AC mixtures reinforced with various contents of basalt fibers ranging from 0.2 to 0.5% by weight at five temperatures and six load frequencies, and the dynamic moduli and phase angles of the mixtures were measured. Compared with the test results of the control mixture (with no basalt fibers), the data show that the high-temperature dynamic modulus of the mixtures initially increases and subsequently decreases with increasing fiber content and reaches its maximum value when the basalt fiber content is 0.3%, while the low-temperature dynamic modulus decreases monotonically with increasing fiber content. Furthermore, the phase angle of the mixtures initially decreases and later increases with increasing fiber content and reaches its minimum value when the basalt fiber content is 0.3%. These behaviors indicate that the addition of basalt fiber improves the high-temperature rutting resistance and low-temperature cracking resistance of the SBS-modified AC mixtures. In addition, the results of the wheel rut test exhibit a good correlation with the results of the dynamic modulus test, revealing the reliability of the dynamic modulus test for evaluating the high-temperature rutting resistance of basalt-fiber-reinforced AC mixtures.


2019 ◽  
Vol 8 (3) ◽  
pp. 2909-2912

The efficacy of fiber reinforced concrete in various application of civil engineering is unassailable. It is a heterogeneous material that includes the fibrous substance which increases its structural integrity and cohesion. In recent years, continuous basalt fibers extruded from naturally basalt rock are attracted attention due to its high temperature and abrasion resistance. Basalt fibers has emerged as a contender in fiber reinforcement composites. This paper aims to evaluate the outcome of basalt fiber on the mechanical strength of concrete and also identify the content that have a optimum influence on concrete. Compressive, split tensile and flexural strength of basalt fiber reinforced concrete is increased than the control concrete. The experimental study shows that the mechanical strength of concrete is increased up to 0.9% of basalt fiber in volume fraction. From the result it is observed that the optimum content of Basalt fiber is 0.9% and the ability of basalt fiber to arrest the cracks area indicated as reason for escalation in mechanical properties.


BioResources ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 2062-2078

The strengthening effect of basalt fiber-reinforced epoxy coatings was investigated with regard to their areal weight and position on the compression or tension side of plywood. Beach plywood was coated on one side with a basalt fiber-reinforced epoxy matrix. Two biaxial and one twilled fabric with areal weights of 170 g/m2, 210 g/m2, and 340 g/m2 respectively were used. The thickness of the plywood was 21 mm. The results showed the best reinforcing effect was obtained with the highest weight when mounted on the tension side of the parallel specimens. The bending strength of these specimens was improved by 15.7%. The perpendicular specimens were positively reinforced by the fiber-reinforced polymers on both the compression and tension sides. The tension reinforcement provided a higher deflection, which was further analyzed using digital image correlation. The evaluated data indicated significant displacement of the neutral axis. The impact strength of the parallel specimens was not improved by the reinforcement, but all of the reinforced perpendicular specimens were significantly strengthened.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xin Yan ◽  
Ronghua Ying ◽  
Jian Jin ◽  
Yuntai Zhang

The aim of the present study was to explore the effect of basalt fibers on the cracking resistance of microbond asphalt macadam and reduce the occurrence of cracks in asphalt pavements with semirigid base. To this end, compressive resilient modulus tests, rutting tests, and semicircular bending tests were conducted on microbond asphalt macadam with different fiber contents, and the change trends of the compressive resilient modulus, dynamic stability, and flexibility index (FI) with fiber content were revealed. According to the results of this study, the addition of basalt fibers affected the compressive resilient modulus, dynamic stability, and FI of microbond asphalt macadam significantly. With the increase of fiber content, the compressive resilient modulus, dynamic stability, and FI presented a uniform trend of increasing first and decreasing afterwards. When the fiber content was 0.4%, various indices reached their maximum values, suggesting that the cracking resistance of the basalt fiber-reinforced microbond asphalt macadam was optimal under this content. This study is of great significance for the application and promotion of basalt fiber-reinforced microbond asphalt macadam.


Ceramics ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 298-307 ◽  
Author(s):  
Gadow ◽  
Weichand ◽  
Jiménez

Promising lightweight composite materials, bridging the gap between Polymer and Ceramic Matrix Composites, are manufactured as polymer derived ceramics by the use of polysiloxanes and basalt fibers. Such competitive free formable Hybrid Composites are supposed to be capable for lightweight applications in a temperature range between 300 °C and 850 °C and short time exposure up to over 1000 °C, even in oxidative atmosphere. Cheap raw materials like basalt fibers and siloxane resins in combination with performing manufacturing technologies can establish completely new markets for intermediate temperature composites. These attributes enable the Hybrid Composites as ideal material for fire retardant applications in automotive engineering and public transportation, as well as in fire protection systems in electrical and civil engineering applications. In this study, the most prominent fields of application and engineering solutions for Hybrid-CMC are reviewed and the results of the thermal resistivity analysis effectuated on basalt fiber reinforced SiOC samples are presented. This study consisted of several air exposures between 1 h and 50 h and temperatures in the range of 650 °C to 1100 °C. Remaining mechanical resistance was characterized by Impulse Excitation Technique (IET) and Interlaminar Shear Strength (ILSS) tests. Basalt fiber reinforced samples exhibited a decent level of mechanical performance even after the most demanding exposures. Due to the poor oxidation resistance of carbon fibers, Cf/SiOC composites were completely degraded after long-term exposure at 500 °C in air.


Sign in / Sign up

Export Citation Format

Share Document