Dating of Guperas Formation rhyolites changes the stratigraphy of the Mesoproterozoic Sinclair Supergroup of Namibia

2020 ◽  
Vol 123 (4) ◽  
pp. 633-648
Author(s):  
D.H. Cornell ◽  
M. Harris ◽  
B.S. Mapani ◽  
T. Malobela ◽  
D. Frei ◽  
...  

Abstract The volcanosedimentary Guperas Formation contains the youngest volcanic rocks of the Sinclair Supergroup in the Konkiep Terrane of southern Namibia. Precise U-Pb zircon microbeam dating shows that the Guperas Formation as mapped includes felsic volcanic rocks which belong to both the first (1.37 to 1.33 Ga) and the third (1.11 to 1.07 Ga) magmatic cycle of the Sinclair Supergroup. Volcanic rocks of the ‘true’ Guperas Formation are dated by three samples, with a combined age of 1108 ± 10 Ma. The sedimentary rocks mapped as Guperas Formation are also distinguished by two different detrital age spectra into the ~1 100 Ma true Guperas Formation and the Aruab Member of the ~1 217 Ma Barby Formation. Geochronology now resolves the previous stratigraphic separation of the very similar Nubib and Rooiberg (Sonntag) Granites. The two small outcrops of 1 334 ± 5 Ma Rooiberg Granite are now shown to be part of the regional 1 334 ± 8 Ma Nubib Granite batholith. The Konkiep Terrane was affected by faulting and shear zones, but was only gently folded and not involved in regional metamorphism, despite its proximity to the Namaqua-Natal Province to the southwest. This is due to the Konkiep Terrane having a thick and strong continental basement which may have formed as part of the mainly Palaeoproterozoic Rehoboth Province. However no Palaeoproterozoic rocks are exposed in the Konkiep Terrane, which is now interpreted as an unaffiliated terrane. The three cycles of extrusive and plutonic magmatism in the Sinclair Supergroup formed in chronologically distinct periods and different tectonic settings, which requires revision of the stratigraphic nomenclature. The Konkiep Group is replaced by three new groups which are separated by >100 million-year unconformities. The Betta Group, represented by the mainly volcanic Kumbis, Nagatis and Welverdiend formations in the first magmatic cycle, probably formed in a passive continental rift setting due to breakup of the Rehoboth Province between 1 374 and 1 334 Ma. The Vergenoeg Group, represented by the sedimentary Kunjas and volcanic Barby and Haiber Flats formations, formed in a subduction setting at the margin of the Konkiep Terrane. This ~1 217 to 1204 Ma magmatic cycle ended with the accretion of Namaqua-Natal terranes to the Kalahari Craton. The ~1 100 Ma Ganaams Group, represented by the volcanic Guperas Formation and sedimentary Aubures Formation, was the result of interplay between the continental-scale Umkondo mantle heating event and movements between crustal blocks following the Namaqua-Natal collisional orogeny.

2020 ◽  
Vol 50 (1) ◽  
pp. 27-81 ◽  
Author(s):  
Stefan Bergman ◽  
Pär Weihed

AbstractTwo lithotectonic units (the Norrbotten and Överkalix units) occur inside the Paleoproterozoic (2.0–1.8 Ga) Svecokarelian orogen in northernmost Sweden. Archean (2.8–2.6 Ga and possibly older) basement, affected by a relict Neoarchean tectonometamorphic event, and early Paleoproterozoic (2.5–2.0 Ga) cover rocks constitute the pre-orogenic components in the orogen that are unique in Sweden. Siliciclastic sedimentary rocks, predominantly felsic volcanic rocks, and both spatially and temporally linked intrusive rock suites, deposited and emplaced at 1.9–1.8 Ga, form the syn-orogenic component. These magmatic suites evolved from magnesian and calc-alkaline to alkali–calcic compositions to ferroan and alkali–calcic varieties in a subduction-related tectonic setting. Apatite–Fe oxide, including the world's two largest underground Fe ore mines (Kiruna and Malmberget), skarn-related Fe oxide, base metal sulphide, and epigenetic Cu–Au and Au deposits occur in the Norrbotten lithotectonic unit. Low- to medium-pressure and variable temperature metamorphic conditions and polyphase Svecokarelian ductile deformation prevailed. The general northwesterly or north-northeasterly structural grain is controlled by ductile shear zones. The Paleotectonic evolution after the Neoarchean involved three stages: (1) intracratonic rifting prior to 2.0 Ga; (2) tectonic juxtaposition of the lithotectonic units during crustal shortening prior to 1.89 Ga; and (3) accretionary tectonic evolution along an active continental margin at 1.9–1.8 Ga.


1999 ◽  
Vol 36 (2) ◽  
pp. 293-312 ◽  
Author(s):  
Kevin M Ansdell ◽  
Karen A Connors ◽  
Richard A Stern ◽  
Stephen B Lucas

Lithological and structural mapping in the east Wekusko Lake area of the Flin Flon Belt, Trans-Hudson Orogen, suggested an intimate relationship between magmatism, fluvial sedimentation, and initiation of fold and thrust belt deformation. Conventional U-Pb geochronology of volcanic rocks in fault-bounded assemblages provides a minimum age of 1876 ± 2 Ma for McCafferty Liftover back-arc basalts, and ages of between 1833 and 1836 Ma for the Herb Lake volcanic rocks. A rhyolite which unconformably overlies Western Missi Group fluvial sedimentary rocks has complex zircon systematics. This rock may be as old as about 1856 Ma or as young as 1830 Ma. The sedimentary rocks overlying this rhyolite are locally intercalated with 1834 Ma felsic volcanic rocks, and yield sensitive high resolution ion microprobe (SHRIMP) U-Pb and Pb-evaporation detrital zircon ages ranging from 1834 to 2004 Ma. The Eastern Missi Group is cut by an 1826 ± 4 Ma felsic dyke, and contains 1832-1911 Ma detrital zircons. The dominant source for detritus in the Missi Group was the Flin Flon accretionary collage and associated successor arc rocks. The fluvial sedimentary rocks and the Herb Lake volcanic rocks were essentially coeval, and were then incorporated into a southwest-directed fold and thrust belt which was initiated at about 1840 Ma and active until at least peak regional metamorphism.


1985 ◽  
Vol 22 (7) ◽  
pp. 1048-1065 ◽  
Author(s):  
R. A. Frith ◽  
B. J. Fryer

The Regan Intrusive Suite of about 100 plutons of tonalite, granodiorite, and quartz diorite intruded the Yellowknife Supergroup and migmatite terrain in the northwest Slave Structural Province 2.59 Ga ago. Rare-earth-element (REE), trace-element, and major-element analyses from 39 representative whole rocks from the suite suggest it was derived by batch melting of the crust, producing a parental magma of tonalitic or granodioritic composition. By analysing REE from different parts of a zoned pluton, it was concluded that REE distribution was controlled by early separation of quartz diorite from the parent magma by flow differentiation and that the bulk of the REE were contained in early, cumulate, accessory apatite and monazite. The residual magma was further fractionated in pipelike magma chambers during ascent into more leucocratic rocks. Chondrite-normalized REE patterns of single-lithology plutons are similar to lithologies in zoned plutons, and it is proposed they initially segregated during ascent. It was found that granites, which were formerly grouped with the suite, formed in three ways, only one of which is related to the Regan Intrusive Suite.Study of 2.67 Ga old synvolcanic tonalite pluton revealed a strong covariance of light REE with those of the bimodal, calc-alkaline Hackett River Group of volcanic rocks. The data imply a common crustal source, but mass balance requires larger volumes of felsic volcanic rocks than are presently preserved, suggesting that much of the erupted felsic pyroclastic rocks were eroded. Partial melts from synvolcanic tonalite during subsequent regional metamorphism differentially depleted host rocks in REE and concentrated Eu and heavy rare-earth elements (HREE) in trondhjemite pegmatites.


2020 ◽  
Vol 50 (1) ◽  
pp. 83-130 ◽  
Author(s):  
Pietari Skyttä ◽  
Pär Weihed ◽  
Karin Högdahl ◽  
Stefan Bergman ◽  
Michael B. Stephens

AbstractThe Bothnia–Skellefteå lithotectonic unit is dominated by turbiditic wacke and argillite (Bothnian basin), deposited at 1.96 (or older)–1.86 Ga, metamorphosed generally under high-grade conditions and intruded by successive plutonic suites at 1.95–1.93, 1.90–1.88, 1.87–1.85 and 1.81–1.76 Ga. In the northern part, low-grade and low-strain, 1.90–1.86 Ga predominantly magmatic rocks (the Skellefte–Arvidsjaur magmatic province) are enclosed by the basinal components. Subduction-related processes in intra-arc basin and magmatic arc settings, respectively, are inferred. Changes in the metamorphic grade and the relative timing of deformation and structural style across the magmatic province are linked to major shear zones trending roughly north–south and, close to the southern margin, WNW–ESE. Zones trending WNW–ESE and ENE–WSW dominate southwards. Slip along the north–south zones in an extensional setting initiated synchronously with magmatic activity at 1.90–1.88 Ga. Tectonic inversion steered by accretion to a craton to the east, involving crustal shortening, ductile strain and crustal melting, occurred at 1.88–1.85 Ga. Deformation along shear zones under lower-grade conditions continued at c. 1.8 Ga. Felsic volcanic rocks (1.90–1.88 Ga) host exhalative and replacement-type volcanogenic massive sulphide deposits (the metallogenic Skellefte district). Other deposits include orogenic Au, particularly along the ‘gold line’ SW of this district, porphyry Cu–Au–Mo, and magmatic Ni–Cu along the ‘nickel line’ SE of the ‘gold line’.


2015 ◽  
Vol 42 (4) ◽  
pp. 437 ◽  
Author(s):  
Phillips C. Thurston

Greenstone belts are long, curvilinear accumulations of mainly volcanic rocks within Archean granite−greenstone terranes, and are subdivided into two geochemical types: komatiite−tholeiite sequences and bimodal sequences. In rare instances where basement is preserved, the basement is unconformably overlain by platform to rift sequences consisting of quartzite, carbonate, komatiite and/or tholeiite. The komatiite−tholeiite sequences consist of km-scale thicknesses of tholeiites, minor intercalated komatiites, and smaller volumes of felsic volcanic rocks. The bimodal sequences consist of basal tholeiitic flows succeeded upward by lesser volumes of felsic volcanic rocks. The two geochemical types are unconformably overlain by successor basin sequences containing alluvial–fluvial clastic metasedimentary rocks and associated calc-alkaline to alkaline volcanic rocks.   Stratigraphically controlled geochemical sampling in the bimodal sequences has shown the presence of Fe-enrichment cycles in the tholeiites, as well as monotonous thicknesses of tholeiitic flows having nearly constant MgO, which is explained by fractionation and replenishment of the magma chamber with fresh mantle-derived material. Geochemical studies reveal the presence of boninites associated with the komatiites, in part a result of alteration or contamination of the komatiites. Within the bimodal sequences there are rare occurrences of adakites, Nb-enriched basalts and magnesian andesites.    The greenstone belts are engulfed by granitoid batholiths ranging from soda-rich tonalite−trondhjemite−granodiorite to later, more potassic granitoid rocks. Archean greenstone belts exhibit a unique structural style not found in younger orogens, consisting of alternating granitoid-cored domes and volcanic-dominated keels. The synclinal keels are cut by major transcurrent shear zones.   Metamorphic patterns indicate that low pressure metamorphism of the greenstones is centred on the granitoid batholiths, suggesting a central role for the granitoid rocks in metamorphosing the greenstones. Metamorphic patterns also show that the proportion of greenstones in granite−greenstone terranes diminishes with deeper levels of exposure.   Evidence is presented on both sides of the intense controversy as to whether greenstone belts are the product of modern plate tectonic processes complete with subduction, or else the product of other, lateral tectonic processes driven by the ‘mantle wind.’ Given that numerous indicators of plate tectonic processes – structural style, rock types, and geochemical features − are unique to the Archean, it is concluded that the evidence is marginally in favour of non-actualistic tectonic processes in Archean granite−greenstone terranes.RÉSUMÉLes ceintures de roches vertes sont des accumulations longiformes et curvilinéaires, principalement composées de roches volcaniques au sein de terranes granitique archéennes,  et étant subdivisées en deux types géochimiques: des séquences à komatiite–tholéite et des séquences bimodales. En de rares occasions, lorsque le socle est préservé, ce dernier est recouvert en discordance par des séquences de plateforme ou de rift, constituées de quartzite, carbonate, komatiite et/ou de tholéiite. Les séquences de komatiite-tholéiite forment des épaisseurs kilométriques de tholéiite, des horizons mineurs de komatiites, et des volumes de moindre importance de roches volcaniques felsiques. Les séquences bimodales sont constituées à la base, de coulées tholéiitiques surmontées par des volumes mineurs de roches volcaniques felsiques. Ces deux types géochimiques sont recouverts en discordance par des séquences de bassins en succession contenant des roches métasédimentaires clastiques fluvio-alluvionnaires associées à des roches volcaniques calco-alcalines à alcalines.   Un échantillonnage à contrôle stratigraphique des séquences bimodales a révélé la présence de cycles d’enrichissement en Fe dans les tholéiites, ainsi que des épaisseurs continues d’épanchements tholéiitiques ayant des valeurs presque constante en  MgO, qui s’explique par la cristallisation fractionnée et le réapprovisionnement de la chambre magmatique par du matériel mantélique. Les études géochimiques montrent la présence de boninites associées aux komatiites, résultant en partie de l’altération ou de la contamination des komatiites. Au sein des séquences bimodales, on retrouve en de rares occasions des adakites, des basaltes enrichis en Nb et des andésites magnésiennes.   Les ceintures de roches vertes sont englouties dans des batholites granitoïdes de composition passant des tonalites−trondhjémites−granodiorites enrichies en sodium, à des roches granitoïdes tardives plus potassiques. Les ceintures de roches vertes archéennes montrent un style structural unique que l’on ne retrouve pas dans des orogènes plus jeunes, et qui est constitué d’alternances de dômes à cœur granitoïdes et d`affaissements principalement composés de roches volcaniques. Les synclinaux formant les affaissements sont recoupés par de grandes zones de cisaillement.   Les profils métamorphiques indiquent que le métamorphisme de basse pression des roches vertes est centré sur les batholites, indiquant un rôle central des roches granitoïdes durant le métamorphisme des roches vertes. Les profils métamorphiques montrent également que la proportion de roches vertes dans les terranes granitiques diminue avec l’exposition des niveaux plus profonds.   On présente les arguments des deux côtés de l’intense controverse voulant que les ceintures de roches vertes soient le produit de processus moderne de la tectonique des plaques incluant la subduction, ou alors le produit d’autres processus tectoniques découlant du « flux mantélique ». Étant donné la présence des indicateurs des processus de tectonique des plaques – style structural, les types de roches, et les caractéristiques géochimiques – ne se retrouvent qu’à l’Archéen, nous concluons que les indices favorisent légèrement l’option de processus tectoniques non-actuels dans les terranes granitiques de roches vertes à l’Archéen.


2020 ◽  
Vol 50 (1) ◽  
pp. 155-206 ◽  
Author(s):  
Michael B. Stephens ◽  
Nils F. Jansson

AbstractFelsic volcanic rocks (c. 1.91–1.89 Ga) and interlayered limestone, hosting Zn–Pb–Ag ± Cu ± Au ± Fe sulphide and Fe oxide deposits, characterize the Bergslagen lithotectonic unit, Svecokarelian orogen, south-central Sweden. Three sulphide mines are currently in operation. Siliciclastic sedimentary rocks stratigraphically envelop this volcanic succession and all the rocks are intruded by a dominant calc-alkaline, c. 1.91–1.87 Ga plutonic suite. Fabric development associated with folding and localized shear deformation followed at c. 1.87–1.86 Ga (D1) and was succeeded by strongly partitioned strain (D2). Dextral transpression along steeply dipping, WNW–ESE or NW–SE shear zones prevailed in the northern and southern domains, whereas major folding with east to northeasterly axial surface traces and shearing along limbs occurred in the central domain. Open folding (D3) subsequently affected the western areas. Polyphase metamorphism under low-pressure and variable temperature conditions included anatexis at c. 1.86 Ga (M1) and 1.84–1.80 Ga (M2). More alkali–calcic magmatic activity, combined with the emplacement of anatectic granite and pegmatite, overlapped and succeeded the M1 and M2 migmatization events at c. 1.87–1.83 Ga and c. 1.82–1.75 Ga, respectively. The younger granites are genetically linked in part to W skarn deposits and host Mo sulphide mineralization. Switching between retreating and advancing subduction systems during three separate tectonic cycles along a convergent, active continental plate margin is inferred.


2021 ◽  
Vol 38 (2) ◽  
pp. 37-48
Author(s):  
Biswajit Panigrahi

Mesoproterozoic Chandil Formation (ca. 1600 Ma) of North Singhbhum Mobile Belt record numerous features of felsic volcaniclastics and felsic to intermediate volcanics preserved in the central sector of the fold belt around Kharidih-Bareda area, Seraikela-Kharsawan district, Jharkhand. The felsic volcanic rocks exhibit flow bands, autoclasts and layering of crystal mushes revealing viscous nature of eruptives. The volcaniclastic sediments comprise of significant proportion of volcanic epiclasts and accidental lithic fragments. These volcaniclastics have been categorized into five prominent lithofacies viz, stratified lapilli tuff, banded tuff, tuff with penecontemporaneous deformation, welded lapilli stones, vitric tuff and volcanic bombs by field and petrographic studies of outcrops and subsurface borehole cores. The welded lapilli tuffs display fiamme and eutaxitic texture. Interlayering of the volcaniclastics, which are most often pyrite-rich, with psamo-pelitic lithology like carbonaceous phyllite, variegated phyllite, quartzite and minor limestone is suggestive of marine euxenic depositional environment. Petrographic study of the volcaniclastics indicated presence of glass shards, garnet phenocrysts, spherules of tremolite, ovoid to lenticular accretionary lapilli along with devitrified glassy material. Compositionally these felsic volcanics and volcaniclastics are rhyodacitic to andesitic in nature with peraluminous to meta aluminous in character. A/CNK values vary from 0.52 to 2.42 in felsic volcanics and from 0.12 to 1.63 in volcaniclastics. Signatures of arc magmatism is indicated by low concentration of HFS elements such as Nb (5-17 ppm), Ga (11-17 ppm) and Y (5-28 ppm). Elevated intrinsic content of uranium (3-8 ppm), Th/U ratio ranging from 1.2 to 13.2, presence of metamict allanite and zircon in volcanics and volcaniclastics reveal their suitability as a prospective source for search of uranium mineralization. The volcanic-volcaniclastic-clastic association of the Chandil Formation provides an ideal situation where provenance and province both are available. Thus, suitable litho-structural locales such as the concealed shear zones sympathetic to the Dalma thrust and South Purulia Shear Zone within the volcano-sedimentary package of Chandil Formation may be targeted as preferable sites for locating concealed uranium mineralization.


Author(s):  
Henrik Stendal ◽  
Wulf Mueller ◽  
Nicolai Birkedal ◽  
Esben I. Hansen ◽  
Claus Østergaard

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stendal, H., Mueller, W., Birkedal, N., Hansen, E. I., & Østergaard, C. (1997). Mafic igneous rocks and mineralisation in the Palaeoproterozoic Ketilidian orogen, South-East Greenland: project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 66-74. https://doi.org/10.34194/ggub.v176.5064 _______________ The multidisciplinary SUPRASYD project (1992–96) focused on a regional investigation of the Palaeoproterozoic Ketilidian orogenic belt which crosses the southern tip of Greenland. Apart from a broad range of geological and structural studies (Nielsen et al., 1993; Garde & Schønwandt, 1994, 1995; Garde et al., 1997), the project included a mineral resource evaluation of the supracrustal sequences associated with the Ketilidian orogen (e.g. Mosher, 1995). The Ketilidian orogen of southern Greenland can be divided from north-west to south-east into: (1) a border zone in which the crystalline rocks of the Archaean craton are unconformably overlain by Ketilidian supracrustal rocks; (2) a major polyphase pluton, referred to as the Julianehåb batholith; and (3) extensive areas of Ketilidian supracrustal rocks, divided into psammitic and pelitic rocks with subordinate interstratified mafic volcanic rocks (Fig. 1). The Julianehåb batholith is viewed as emplaced in a magmatic arc setting; the supracrustal sequences south of the batholith have been interpreted as either (1) deposited in an intra-arc and fore-arc basin (Chadwick & Garde, 1996), or (2) deposited in a back-arc or intra-arc setting (Stendal & Swager, 1995; Swager, 1995). Both possibilities are plausible and infer subduction-related processes. Regional compilations of geological, geochemical and geophysical data for southern Greenland have been presented by Thorning et al. (1994). Mosher (1995) has recently reviewed the mineral exploration potential of the region. The commercial company Nunaoil A/S has been engaged in gold prospecting in South Greenland since 1990 (e.g. Gowen et al., 1993). A principal goal of the SUPRASYD project was to test the mineral potential of the Ketilidian supracrustal sequences and define the gold potential in the shear zones in the Julianehåb batholith. Previous work has substantiated a gold potential in amphibolitic rocks in the south-west coastal areas (Gowen et al., 1993.), and in the amphibolitic rocks of the Kutseq area (Swager et al., 1995). Field work in 1996 was focused on prospective gold-bearing sites in mafic rocks in South-East Greenland. Three M.Sc. students mapped showings under the supervision of the H. S., while an area on the south side of Kangerluluk fjord was mapped by H. S. and W. M. (Fig. 4).


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 655
Author(s):  
Hanzhi Chen ◽  
Mingcai Hou ◽  
Fuhao Xiong ◽  
Hongwei Tang ◽  
Gangqiang Shao

Miocene felsic magmatic rocks with high Sr/Y ratios are widely distributed throughout the Gangdese belt of southern Tibet. These provide a good opportunity to explore the magmatic process and deep dynamic mechanisms that occurred after collision between the Indo and the Asian plates. In this paper, felsic volcanic rocks from the Zongdangcun Formation in the Wuyu Basin in the central part of the southern Gangdese belt are used to disclose their origin. Zircon U-Pb geochronology analysis shows that the felsic magmatism occurred at ca. 10.3 ± 0.2 Ma, indicating that the Zongdangcun Formation formed during the Miocene. Most of these felsic magmatic rocks plot in the rhyolite area in the TAS diagram. The rhyolite specimens from the Zongdangcun Formation have the characteristics of high SiO2 (>64%), K2O, SiO2, and Sr contents, a low Y content and a high Sr/Y ratio, and the rocks are rich in LREE and depleted in HREE, showing geochemical affinity to adakitic rocks. The rocks have an enriched Sr-Nd isotopic composition (εNd(t) = −6.76 to −6.68, (87Sr/86Sr)i = 0.7082–0.7088), which is similar to the mixed product of the juvenile Lhasa lower continental crust and the ancient Indian crust. The Hf isotopes of zircon define a wide compositional range (εHf(t) = −4.19 to 6.72) with predominant enriched signatures. The Miocene-aged crustal thickness in southern Tibet, calculated on the basis of the Sr/Y and (La/Yb)N ratios was approximately 60–80 km, which is consistent with the thickening of the Qinghai-Tibet Plateau. The origin of Miocene felsic magmatic rocks with high Sr/Y ratios in the middle section of the Gangdese belt likely involved a partial melting of the thickened lower crust, essentially formed by the lower crust of the Lhasa block, with minor contribution from the ancient Indian crust. After comprehensively analyzing the post-collisional high Sr/Y magmatic rocks (33–8 Ma) collected from the southern margin of the Gangdese belt, we propose that the front edge tearing and segmented subduction of the Indian continental slab may be the major factor driving the east-west trending compositional changes of the Miocene adakitic rocks in southern Tibet.


2021 ◽  
Vol 62 (10) ◽  
pp. 1175-1187
Author(s):  
A.D. Nozhkin ◽  
O.M. Turkina ◽  
K.A. Savko

Abstract —The paper presents results of a petrogeochemical and isotope–geochronological study of the granite–leucogranite association of the Pavlov massif and felsic volcanics from the Elash graben (Biryusa block, southwest of the Siberian craton). A characteristic feature of the granite–leucogranites is their spatial and temporal association with vein aplites and pegmatites of the East Sayan rare-metal province. The U–Pb age of zircon from granites of the Pavlov massif (1852 ± 5 Ma) is close to the age of the pegmatites of the Vishnyakovskoe rare-metal deposit (1838 ± 3 Ma). The predominant biotite porphyritic granites and leucogranites of the Pavlov massif show variable alkali ratios (K2O/Na2O = 1.1–2.3) and ferroan (Fe*) index and a peraluminous composition; they are comparable with S-granites. The studied rhyolites of the Tagul River (SiO2 = 71–76%) show a low ferroan index, a high K2O/Na2O ratio (1.6–4.0), low (La/Yb)n values (4.3–10.5), and a clear Eu minimum (Eu/Eu* = 0.3–0.5); they are similar to highly fractionated I-granites. All coeval late Paleoproterozoic (1.88–1.85 Ga) granites and felsic volcanics of the Elash graben have distinct differences in composition, especially in the ferroan index and HREE contents, owing to variations in the source composition and melting conditions during their formation at postcollisions extension. The wide range of the isotope parameters of granites and felsic volcanic rocks (εNd from +2.0 to –3.7) and zircons (εHf from +3.0 to +0.8, granites of the Toporok massif) indicates the heterogeneity of the crustal basement of the Elash graben, which formed both in the Archean and in the Paleoproterozoic.


Sign in / Sign up

Export Citation Format

Share Document