q192r polymorphism
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 81 ◽  
pp. 103519
Author(s):  
Ángeles C. Ochoa-Martínez ◽  
Yesenia Araiza-Gamboa ◽  
José A. Varela-Silva ◽  
Sandra T. Orta-García ◽  
Leticia Carrizales-Yáñez ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1198
Author(s):  
Marta Sikora ◽  
Ewa Bretes ◽  
Joanna Perła-Kaján ◽  
Izabela Lewandowska ◽  
Łukasz Marczak ◽  
...  

High-density lipoprotein (HDL), in addition to promoting reverse cholesterol transport, possesses anti-inflammatory, antioxidative, and antithrombotic activities. Paraoxonase 1 (PON1), carried on HDL in the blood, can contribute to these antiatherogenic activities. The PON1-Q192R polymorphism involves a change from glutamine (Q variant) to arginine (R variant) at position 192 of the PON1 protein and affects its enzymatic activity. The molecular basis of PON1 association with cardiovascular and neurological diseases is not fully understood. To get insight into the function of PON1 in human disease, we examined how genetic attenuation of PON1 levels/activity affect plasma proteomes of mice and humans. Healthy participants (48.9 years old, 50% women) were randomly recruited from the Poznań population. Four-month-old Pon1−/− (n = 17) and Pon1+/+ (n = 8) mice (50% female) were used in these experiments. Plasma proteomes were analyzed using label-free mass spectrometry. Bioinformatics analysis was carried out using the Ingenuity Pathway Analysis (IPA) resources. PON1-Q192R polymorphism and Pon1−/− genotype induced similar changes in plasma proteomes of humans and mice, respectively. The top molecular network, identified by IPA, affected by these changes involved proteins participating in lipoprotein metabolism. Other PON1 genotype-dependent proteomic changes affect different biological networks in humans and mice: “cardiovascular, neurological disease, organismal injury/abnormalities” in PON1-192QQ humans and “humoral immune response, inflammatory response, protein synthesis” and “cell-to-cell signaling/interaction, hematological system development/function, immune cell trafficking” in Pon1−/− mice. Our findings suggest that PON1 interacts with molecular pathways involved in lipoprotein metabolism, acute/inflammatory response, and complement/blood coagulation that are essential for blood homeostasis. Modulation of those interactions by the PON1 genotype can account for its association with cardiovascular and neurological diseases.


2020 ◽  
Vol 159 ◽  
pp. S19
Author(s):  
Tatjana A. Bairova ◽  
Oksana A. Ershova ◽  
Lyubov V. Rychkova ◽  
Marina Darenskaya ◽  
Lyubov Kolesnikova

2020 ◽  
Vol 159 ◽  
pp. S19
Author(s):  
Tatjana A. Bairova ◽  
Oksana A. Ershova ◽  
Lyubov V. Rychkova ◽  
Marina Darenskaya ◽  
Lyubov Kolesnikova

Author(s):  
Vahid Pourshafiei ◽  
Vahide Jamshidi ◽  
Ameneh Khodarahmi ◽  
Mahmood Vakili

Background and Aims: This study aimed to investigate the frequency of Q192R polymorphism and oxidative stress markers in infants with glucose-6phosphate dehydrogenase (G6PD) deficiency. Materials and Methods: This is a case-control study in which 60 male infants (2-4 months old) with G6PD deficiency along with 60 age- and sexmatched healthy neonates were included. The diagnosis of G6PD deficiency was made by Beutler test by which the G6PD enzyme activity is measured by the fluorescent spot test. The blood samples were taken from all infants, and the sera were isolated for the evaluation of Paraoxonase-1 (PON1) and malondialdehyde (MDA) using the spectrophotometric method. Restriction fragment length polymorphism was applied for determination of Q192R polymorphism (rs 662). Results: The frequencies of QQ, QR, and RR genotypes were 55%, 39%, and 6%, respectively in infants with G6PD deficiency while the above genotype frequencies were 45%, 49%, and 6%, respectively in healthy neonates. The frequency of R and T alleles failed to show any significant difference when G6PD deficient infants and healthy neonates were compared. The results indicated PON1 activity and MDA levels being significantly (p<0.05) higher in neonates with G6PD deficiency compared with their healthy counterparts. Conclusion: Contrary to previous studies, it was indicated that the presence of RQ and RR genotypes at Q192R position is associated with decreased activity of PON1 and increased oxidative stress. In this study, no significant differences were found in the genotype and allele frequency of PON1 Q192R polymorphism between the case and control groups. Also, this frequency was not consistent with the results obtained from oxidative stress conditions.


2019 ◽  
Vol 17 (11) ◽  
pp. 1004-1020 ◽  
Author(s):  
Estefania Gastaldello Moreira ◽  
Karine Maria Boll ◽  
Dalmo Guilherme Correia ◽  
Janaina Favaro Soares ◽  
Camila Rigobello ◽  
...  

Background: Nitro-oxidative stress (NOS) has been implicated in the pathophysiology of psychiatric disorders. The activity of the polymorphic antioxidant enzyme paraoxonase 1 (PON1) is altered in diseases where NOS is involved. PON1 activity may be estimated using different substrates some of which are influenced by PON1 polymorphisms. Objectives: 1) to review the association between PON1 activities and psychiatric diseases using a standardized PON1 substrate terminology in order to offer a state-of-the-art review; and 2) to review the efficacy of different strategies (nutrition, drugs, lifestyle) to enhance PON1 activities. Methods: The PubMed database was searched using the terms paraoxonase 1 and psychiatric diseases. Moreover, the database was also searched for clinical trials investigating strategies to enhance PON1 activity. Results: The studies support decreased PON1 activity as determined using phenylacetate (i.e., arylesterase or AREase) as a substrate, in depression, bipolar disorder, generalized anxiety disorder (GAD) and schizophrenia, especially in antipsychotic-free patients. PON1 activity as determined with paraoxon (i.e., POase activity) yields more controversial results, which can be explained by the lack of adjustment for the Q192R polymorphism. The few clinical trials investigating the influence of nutritional, lifestyle and drugs on PON1 activities in the general population suggest that some polyphenols, oleic acid, Mediterranean diet, no smoking, being physically active and statins may be effective strategies that increase PON1 activity. Conclusion: Lowered PON1 activities appear to be a key component in the ongoing NOS processes that accompany affective disorders, GAD and schizophrenia. Treatments increasing attenuated PON1 activity could possibly be new drug targets for treating these disorders.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 252 ◽  
Author(s):  
Cadiele Oliana Reichert ◽  
Carolina Garcia de Macedo ◽  
Débora Levy ◽  
Bruno Carnevale Sini ◽  
Andréia Moreira Monteiro ◽  
...  

(1) Background: Oxidative stress, chronic inflammation, vasoocclusion, and free iron are all features present in sickle cell disease. Paraoxonases (PON) are a family (PON-1, PON-2, PON-3) of antioxidant enzymes with anti-inflammatory action. Here, for the first time, we described PON-1 activities and PON-1, PON-2, PON-3 polymorphisms in patients with sickle cell disease, homozygous for HbSS, compared with healthy controls. (2) Methods: The groups were matched for age and gender. PON-1 activities (arylesterase and paraoxonase) were determined by enzymatic hydrolysis of phenylcetate and paraoxon, respectively. Polymorphisms were determined by Restriction Fragment Length Polymorphism- Polymerase Chain Reaction (RFLP-PCR). (3) Results: Plasma cholesterol and fractions, ApoA1 and ApoB levels were all decreased in sickle cell disease patients, while anti-oxidized low-density lipoprotein (LDL) antibodies and C-reactive protein were increased. Serum arylesterase activity was lower in sickle cell disease patients when compared with healthy controls. In patients, paraoxonase activity was higher in those with PON-1 RR Q192R polymorphism. In these patients, the increase of serum iron and ferritin levels and transferrin saturation were less pronounced than those observed in patients with QQ or QR polymorphism. No differences were observed with PON-1 L55M, and PON-2 and PON-3 polymorphisms. Multivariate regression analysis showed that transferrin and ferritin concentrations correlated with arylesterase and paraoxonase activities. (4) Conclusions: Both transferrin and ferritin were the main predictors of decreased arylesterase and paraoxonase activities in patients with sickle cell disease. LDL oxidation increased, and RR PON-1 Q192R polymorphism is likely to be a protective factor against oxidative damage in these patients.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Wenxing Peng ◽  
Xiujin Shi ◽  
Xiaoyu Xu ◽  
Yang Lin

Objective. The objective of this study is to explore the relationships of the effects of CYP2C19 and PON1 Q192R polymorphism on the activity of clopidogrel and the risk of high platelet responsiveness (HPR) by thrombelastography in patients with acute coronary syndrome (ACS). Methods. 459 ACS patients with aspirin and clopidogrel were enrolled in this observational case control study from July 13, 2015, to November 11, 2017. The patients with <30% platelet inhibition were defined as HPR group, while the others were defined as normal platelet responsiveness (NPR) group. The genotypes distribution between the groups was assessed, and the clinical impact of genetic variants was investigated by comparing the relationship between the risk of HPR and genotypes including CYP2C19⁎2, CYP2C19⁎3, CYP2C19⁎17, ABCB1, and PON1. Results. Compared with CYP2C19⁎1/⁎1 wild type carriers, CYP2C19⁎2 and ⁎3 carriers showed a significant association with the lower platelet inhibition (P=0.048). The platelet inhibition in carriers of at least one CYP2C19 loss-of-function (LOF) alleles was obviously higher than noncarriers (P=0.031). The platelet inhibition of PON1 192R carriers was lower than PON1 192Q carriers (P=0.044). Patients with the CYP2C19⁎2 and ⁎3 alleles had a greater risk of HPR than CYP2C19 wild type carriers (adjusted P=0.018 and adjusted P=0.005). At least one PON1 192R carrier predicted a significantly higher risk of HPR than PON1 192Q carriers (adjusted P=0.021). Individual CYP2C19⁎17 and ABCB1 variants did not differ significantly between the two groups. Conclusions. CYP2C19 and PON1 Q192R variants influence ADP-induced platelet inhibition by thrombelastography (TEG) in ACS patients with clopidogrel. In addition, both LOF CYP2C19 and PON1 192R variants are independent risk factors of HPR, which is measured by the relative platelet inhibition.


Sign in / Sign up

Export Citation Format

Share Document