scholarly journals Copperpod Plant Synthesized AgNPs Enhance Cytotoxic and Apoptotic Effect in Cancer Cell Lines

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 888
Author(s):  
Balashanmugam Pannerselvam ◽  
Devasena Thiyagarajan ◽  
Annamalai Pazhani ◽  
Kalaichelvan Pudupalayam Thangavelu ◽  
Hyung Joo Kim ◽  
...  

The utilization of biological resources on the manufacture of nano silver has attracted the interest of researchers to develop an eco-friendly, cost-effective technology in nanomaterials production. In the present study, plant-mediated silver nanoparticles (AgNPs) were synthesized using aqueous leaf extracts of the Copperpod plant, which was well characterized. The ultraviolet-visible spectrophotometric study showed a maximum absorbance peak at 425 nm, and the observation of transmission electron microscopic features revealed that the nanoparticles size ranged between 20 and 70 nm. The synthesized AgNPs were tested for in vitro cytotoxic effects against cancerous cells, such as HepG2, A549 and MCF-7 cells. The findings showed that the IC50 values of AgNPs against cancerous cells viz., HepG2, MCF-7 and A549 cells, were observed to be 69 µg/mL, 62 µg/mL and 53 µg/mL, respectively. In addition, the apoptosis property was analysed using propidium iodide and acridine orange-ethidium bromide via the DNA fragmentation technique. Thus, the outcomes of the current analysis presume that the plant mediated AgNPs obtained from a synthesized Copperpod plant possess significant anti-cancer properties against various cancerous cells.

2021 ◽  
Vol 11 (19) ◽  
pp. 9139
Author(s):  
Maria Stefania Sinicropi ◽  
Cinzia Tavani ◽  
Camillo Rosano ◽  
Jessica Ceramella ◽  
Domenico Iacopetta ◽  
...  

Breast cancer is still considered a high-incidence disease, and numerous are the research efforts for the development of new useful and effective therapies. Among anticancer drugs, carbazole compounds are largely studied for their anticancer properties and their ability to interfere with specific targets, such as microtubule components. The latter are involved in vital cellular functions, and the perturbation of their dynamics leads to cell cycle arrest and subsequent apoptosis. In this context, we report the anticancer activity of a series of carbazole analogues 1–8. Among them, 2-nitrocarbazole 1 exhibited the best cytotoxic profile, showing good anticancer activity against two breast cancer cell lines, namely MCF-7 and MDA-MB-231, with IC50 values of 7 ± 1.0 and 11.6 ± 0.8 μM, respectively. Furthermore, compound 1 did not interfere with the growth of the normal cell line MCF-10A, contrarily to Ellipticine, a well-known carbazole derivative used as a reference molecule. Finally, in vitro immunofluorescence analysis and in silico studies allowed us to demonstrate the ability of compound 1 to interfere with tubulin organization, similarly to vinblastine: a feature that results in triggering MCF-7 cell death by apoptosis, as demonstrated using a TUNEL assay.


2021 ◽  
Vol 12 (6) ◽  
pp. 8094-8104

A series of novel thiazolidinone-isatin hybrids have been synthesized through the Knoevenagel reaction of isatin derivatives with synthesized thiazolidinone scaffolds and then evaluated for their in vitro antibacterial effects on Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus). Cytotoxic effects of the compounds on non-small-cell lung cancer cells (A549 cells), breast epithelial cancer cell line (MCF-7), and prostate cancer cells (PC3 cells) were investigated. Among compounds tested for antibacterial activity, S. aureus was susceptible to compound 7d. The most potent compounds against A549, MCF-7, and PC3 tumor cells were found to be 7g. DAPI staining of all cancer cell lines treated with compound 7g, associated with cell death. We finally confirmed that apoptosis occurred in A549 cells by up-regulated Bax expression and down-regulated Bcl-2 expression from the mitochondrial pathway of apoptosis by using the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) method. Our findings suggested that compound 7g may be a good target in designing cancer therapy strategies.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (06) ◽  
pp. 49-59
Author(s):  
Priyambada Kshiroda Nandini Sarangi ◽  
Jyotirmaya Sahoo ◽  
Chita Ranjan Sahoo ◽  
Sudhir Kumar Paidesetty ◽  
Guru Prasad Mohanta

A series of eight quinoline-thiazole hybrid-bearing diazenylsulfonamides, 4a-4h, were synthesized and characterized by UV-Vis, FT/IR, 1H NMR and lC-MS. These compounds were formed when two prepared intermediate precursors of Schiff-base compounds, (E)-N-((2-chloroquinolin-3-yl)methylene)-4phenylthiazol-2-amine (3a) and (E)-N-((2-chloroquinolin-3-yl)methylene)-4-chlorophenylthiazol-2-amine (3b) were converted to the corresponding diazenyl compounds 4a-4h by treating and coupling with the individual diazonium salts of sulfa-drugs. The results of in vitro cytotoxic activity of the synthesized compounds in two cancer cell lines MCF 7 (human breast cancer cell line) and K562 (myelogenousleukemia cell line) have shown the IC50 values as given: 4b against MCF 7 19.52 and against K562 20.55µM; 4d against MCF 7 15.96 and against K562 13.05µM. Moreover, the compound 4-(((Z)-(2-chloroquinolin-3yl)(4-phenylthiazol-2-ylimino)methyl)diazenyl)benzenesulfonic acid (4d) induced maximum percentage of apoptosis. Furthermore, the in vitro antioxidant activity study revealed that among all the synthesized compounds, compound 4d has an excellent radical scavenging effect. Molecular docking was additionally performed to investigate the binding affinity of H-bonding interaction of synthesized compounds with a targeted enzyme and to compare it with the anticancer drugs, dasatinib, bosutinib and dacarbazine.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 437
Author(s):  
Shu-Qin Qin ◽  
Lian-Chun Li ◽  
Jing-Ru Song ◽  
Hai-Yun Li ◽  
Dian-Peng Li

A series of novel structurally simple analogues based on nitidine was designed and synthesized in search of potent anticancer agents. The antitumor activity against human cancer cell lines (HepG2, A549, NCI-H460, and CNE1) was performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay in vitro. The results showed that some of them had good anticancer activities, especially derivatives with a [(dimethylamino)ethyl]amino side chain in the C-6 position. Planar conjugated compounds 15a, 15b, and 15c, with IC50 values of 1.20 μM, 1.87 μM, and 1.19 μM against CNE1 cells, respectively, were more active than nitidine chloride. Compound 15b and compound 15c with IC50 values of 1.19 μM and 1.37 μM against HepG2 cells and A549 cells demonstrated superior activities to nitidine. Besides, compound 5e which had a phenanthridinone core displayed extraordinary cytotoxicity against all test cells, particularly against CNE1 cells with the IC50 value of 1.13 μM.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 10 ◽  
Author(s):  
Hehua Xiong ◽  
Jianxin Cheng ◽  
Jianqing Zhang ◽  
Qian Zhang ◽  
Zhen Xiao ◽  
...  

A series of 4-(pyridin-4-yloxy)benzamide derivatives containing a 1,2,3-triazole fragment were designed, synthesized, and their inhibitory activity against A549, HeLa, and MCF-7 cancer cell lines was evaluated. Most compounds exhibited moderate to potent antitumor activity against the three cell lines. Among them, the promising compound B26 showed stronger inhibitory activity than Golvatinib, with IC50 values of 3.22, 4.33, and 5.82 μM against A549, HeLa, and MCF-7 cell lines, respectively. The structure–activity relationships (SARs) demonstrated that the modification of the terminal benzene ring with a single electron-withdrawing substituent (fluorine atom) and the introduction of a pyridine amide chain with a strong hydrophilic group (morpholine) to the hinge region greatly improved the antitumor activity. Meanwhile, the optimal compound B26 showed potent biological activity in some pharmacological experiments in vitro, such as cell morphology study, dose-dependent test, kinase activity assay, and cell cycle experiment. Finally, the molecular docking simulation was performed to further explore the binding mode of compound B26 with c-Met.


2020 ◽  
Vol 21 (15) ◽  
pp. 5334 ◽  
Author(s):  
Ana Teresa Silva ◽  
Lis Lobo ◽  
Isabel S. Oliveira ◽  
Joana Gomes ◽  
Cátia Teixeira ◽  
...  

Ionic liquids derived from classical antimalarials are emerging as a new approach towards the cost-effective rescuing of those drugs. Herein, we disclose novel surface-active ionic liquids derived from chloroquine and natural fatty acids whose antimalarial activity in vitro was found to be superior to that of the parent drug. The most potent ionic liquid was the laurate salt of chloroquine, which presented IC50 values of 4 and 110 nM against a chloroquine-sensitive and a chloroquine-resistant strain of Plasmodium falciparum, respectively, corresponding to an 11- and 6-fold increase in potency as compared to the reference chloroquine bisphosphate salt against the same strains. This unprecedented report opens new perspectives in both the fields of malaria chemotherapy and of surface-active ionic liquids derived from active pharmaceutical ingredients.


2018 ◽  
Vol 9 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Chandrakant Pawar ◽  
Dattatraya Pansare ◽  
Devanand Shinde

In the present work, we report the synthesis of a series of 3-(substituted phenyl)-N-(2-hydroxy-2-(substituted-phenyl)ethyl)-N-methylthiophene-2-sulfonamide derivatives through Suzuki and Buchwald reaction. We have optimized methodology for targets from milligram to multi-gram scale. The newly synthesized compounds were characterized by 1H NMR, 19F NMR, 13C NMR, LC-MS techniques and purity was further checked by HPLC. The compounds were evaluated for their in-vitro antiproliferative activity against MCF-7, HeLa, A-549 and Du-145 cancer cell lines by CCK-8 assay. The preliminary bioassay suggests that most of the compounds show antiproliferation with different degrees and 5-fluorouracil was used as positive control. Among these compounds 2d, 2g, 2i, 4e, 4h and 4k are most active compared to the standard. All the synthesized compounds show IC50 values from 1.82-9.52 µM in different cell lines. Amongst these, compounds 2d, 2g, 2i, 4e, 4h and 4k were most potent, with IC50 values ranging from 1.82-4.28 µM in different cell lines.


2020 ◽  
Vol 477 (12) ◽  
pp. 2383-2399
Author(s):  
Fengyi Zhao ◽  
Wen Lu ◽  
Yuanyuan Xu ◽  
Li Xu ◽  
Jingjing Zhang ◽  
...  

Several bioactive dehydroabietylamine Schiff-bases (L1−L4), amides (L5−L11) and complex CuL3(NO3)2, Cu(L5)3, Co(L6)2Cl2 had been synthesized successfully for developing more efficient but lower toxic antiproliferative compounds. Their antiproliferative activities to Hela (cervix), HepG2 (liver), MCF-7 (breast), A549 (lung) and HUVEC (umbilical vein, normal cell) were investigated in vitro. The toxicity of all compounds was less than dehydroabietylamine (L0). For HepG2 cells, L1, L2 and L3 had higher anti-HepG2 activity, especially L1 (0.52 µM) had highest anti-HepG2 activity but low toxicity. For MCF-7 cells, L1, L2, L3 and L4 had higher anti-MCF-7 activity, especially L3(0.49 µM) had highest anti-MCF-7 activity but low toxicity. For A549 cells, L2 and L3 had higher anti-A549 activity. Furthermore, L1 and L3 may be the great promise antiproliferative drugs with nontoxic side effects, due to the high anti-HepG2 and anti-MCF-7 inhibition rate in vivo, 65% and 61%, respectively. L1, L2 and L3 could induce apoptosis through intercalating into DNA.


Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 646-651
Author(s):  
EJ Clutterbuck ◽  
CJ Sanderson

The production of human eosinophils in vitro from normal bone marrow by using murine eosinophil differentiation factor (mEDF/interleukin 5) is described. Eosinophil production was selective and first detectable after 14 days and reached a peak between 21 and 35 days when they were the predominant cell type (41% to 89%). Until day 14, all the eosinophils were typical myelocytes, developing thereafter into metamyelocytes and mature cells. All cell types had characteristic light- and electron-microscopic features, apart from the absence of granules with crystalline cores. The eosinophils produced were readily recovered, and both immature myelocytes and mature cells were functionally active in an antibody-dependent, cell-mediated cytotoxicity assay. mEDF added into the assay enhanced the cytotoxicity but to a lower degree than previously reported for peripheral blood eosinophils, which suggests that they may be partially activated. The possibility that eosinophils could be deactivated was tested by removing mEDF from the culture medium. The eosinophils retained viability and functional activity, however, and showed no increased ability to be activated by mEDF for up to six days after removing the mEDF. The liquid culture of human bone marrow was shown to be an alternative assay for eosinophil differentiation factors to colony formation.


2021 ◽  
Vol 9 (1) ◽  
pp. 11-20
Author(s):  
Farzaneh Rasouli Asl ◽  
◽  
Ali Barzegar ◽  
Mohammad Ali Ebrahimzadeh ◽  
◽  
...  

Background: Breast and stomach cancers are the most common malignancies in Iranian females and males, respectively. Enriching with phytochemicals that have antioxidant and cytotoxic activities, extracts from dwarf elder (Sambucus ebulus L.) holds promises to be used for alternative medication. Materials and Methods: We investigated the cytotoxic and antiproliferative activities of the leaf and the fruit ethyl-acetate (EA), as well as the methanolic (MeOH) extracts of dwarf elder upon treatment of the MCF-7 and AGS cells. Twenty-seven concentration series ranging from 10 to 2000 μg/mL were administered to the cells, and their growth inhibitory potential was assessed using MTT assay. The potential anticancer compounds of the extracts were quantified applying an improved highperformance liquid chromatography (HPLC). Results: All extracts showed positive dose-dependent cytotoxic activities on both cell lines. The EA extracts demonstrated more cytotoxicity compared to those of the MeOH ones (P<0.0001). The leaf EA extract showed IC50 values of 65 and 50 μg/mL, while those of the fruit were estimated as 58 and 50 μg/mL on the MCF-7 and AGS cells, respectively. The AGS cell line showed more susceptibility to all extracts tested compared to the MCF-7. MeOH extracts caused only a maximum of ~20% reduction in cell viability at 2000 μg/mL concentration. According to the HPLC analysis, leaf extracts contained phenolic compounds, including p- coumaric acid (0.10 mg per g powder), rutin (0.07 mg per g powder), and quercetin (0.02 mg per g powder). Conclusion: EA extract of the fruit shows the highest cytotoxicity: reducing 35.3% viability of the AGS cells with 10 μg/mL concentration. It can be considered a potential chemopreventive agent for cancer therapies. However, MeOH extracts with far low cytotoxicity or non-cytotoxic at some concentrations would be an appropriate candidate for preventing tumor growth without affecting neighboring normal cells.


Sign in / Sign up

Export Citation Format

Share Document