scholarly journals Tetracycline adsorption on magnetic sludge biochar: size effect of the Fe 3 O 4 nanoparticles

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Suxing Luo ◽  
Jun Qin ◽  
Yuanhui Wu ◽  
Feng Feng

Activated sludge, which is difficult and expensive to treat and dispose of, is a key concern in wastewater treatment plants. In this study, magnetic sludge biochar containing activated sludge and different sizes (14.3, 40.2 and 90.5 nm) of Fe 3 O 4 nanoparticles was investigated as an effective adsorbent for tetracycline (TC) adsorption. Magnetic sludge-based biochar was prepared by a facile cross-linking method and characterized by transmission electron microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and zeta potential analysis. The adsorption performances of TC on three kinds of adsorbents were investigated. Although 14.3 nm Fe 3 O 4 nanoparticles could be inclined to aggregate and partially filled with pores of biochar, it turned out that magnetic sludge biochar with 14.3 nm Fe 3 O 4 nanoparticles exhibited optimum performance for TC removal with adsorption capacity up to 184.5 mg g −1 , due to the larger amounts of functional groups and the change of zeta potential. Furthermore, the adsorption kinetics of TC on three kinds of adsorbents were studied, which implied that the pseudo-second-order kinetic model exhibited the better fit for the entire sorption process.

2006 ◽  
Vol 54 (10) ◽  
pp. 1-8 ◽  
Author(s):  
S. Deng ◽  
Y.P. Ting ◽  
G. Yu

A novel biosorbent was prepared by chemically grafting of polyethylenimine (PEI) onto the fungal biomass of Penicillium chrysogenum through a two-step reaction. The modified biosorbent is favorable for the removal of anionic Cr(VI) species from aqueous solution due to the protonation of amine groups on the biomass surface. The sorption capacity for Cr(VI) increased by 7.2-fold after surface modification. Sorption kinetics results show that the pseudo-second-order kinetic model described the experimental data well. During the sorption process, X-ray photoelectron spectroscopy (XPS) was used to analyze the chromium species on the biosorbent surface and the results indicate that part of the Cr(VI) ions were reduced to Cr(III) ions which can be chelated with the amine groups on the biomass surface. The reduced Cr(III) ions formed some aggregates on the surface at higher solution pHs.


2020 ◽  
Vol 69 (7) ◽  
pp. 678-693
Author(s):  
R. Aouay ◽  
S. Jebri ◽  
A. Rebelo ◽  
J. M. F. Ferreira ◽  
I. Khattech

Abstract Hydroxyapatite powders were synthesized according to a wet precipitation route and then subjected to heat treatments within the temperature range of 200–800 °C. The prepared samples were tested as sorbents for cadmium in an aqueous medium. The best performances were obtained with the material treated at 200 °C (HAp200), as the relevant sorbent textural features (SBET – specific surface area and Vp – total volume of pores) were least affected at this low calcination temperature. The maximum adsorption capacity at standard ambient temperature and pressure was 216.6 mg g−1, which increased to 240.7 mg g−1 by increasing the temperature from 25 to 40 °C, suggesting an endothermic nature of the adsorption process. Moreover, these data indicated that a thermal treatment at 200 °C enhanced the ability of the material in Cd2+ uptake by more than 100% compared to other similar studies. The adsorption kinetic process was better described by the pseudo-second-order kinetic model. Langmuir, Freundlich, and Dubinin–Kaganer–Radushkevich isotherms were applied to describe the sorption behaviour of Cd2+ ions onto the best adsorbent. Furthermore, a thermodynamic study was also performed to determine ΔH°, ΔS°, and ΔG° of the sorption process of this adsorbent. The adsorption mechanisms were investigated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy-transmission electron microscopy (SEM-TEM) observations.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 378 ◽  
Author(s):  
Junjing Li ◽  
Huan Wang ◽  
Liang Wang ◽  
Chang Ma ◽  
Cong Luan ◽  
...  

Noble metal palladium modified foamed nickel electrode (Pd/foam-Ni) was prepared by electrodeposition method. The fabricated electrode showed better catalytic performance than the Pd/foam-Ni prepared by conventional electroless deposition. The catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Electrocatalytic activity of the Pd/Ni was studied for the hydrodechlorination of monochlorophenol isomers. The Pd/Ni exhibited good catalytic activity for 3-chlorophenol (3-CP). Complete decomposition of chlorophenol isomers could be achieved within 2 h, and the hydrodechlorination process conformed to the pseudo-first-order kinetic model. It showed a supreme stability after recycling for 5 times. The Pd/Ni exhibited a promising application prospect with high effectiveness and low Pd loading.


2017 ◽  
Vol 8 (3) ◽  
pp. 350-359 ◽  
Author(s):  
Danyang Yin ◽  
Zhengwen Xu ◽  
Jing Shi ◽  
Lili Shen ◽  
Zexiang He

Abstract In this study, schorl was used as an effective adsorbent for ciprofloxacin removal from wastewater. The adsorption performance, mechanism and effect of metal ion on sorption were investigated. Adsorption capacity reached a maximum (8.49 mg/g) when the pH value was 5.5. The pseudo-second-order kinetic model and Freundlich model could better describe the experimental data. The negative ΔH (–22.96 KJ/mol) value showed that the adsorption process was exothermic. The results also indicated physical adsorption existed on the adsorption process, which was in agreement with the analysis of X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy. The desorption rate could reach 94%, which suggested that schorl had a good desorption and regeneration performance. Coexisting ions, such as Cu2+ and Al3+, could obviously inhibit adsorption, and the inhibition from Al3+ was significantly higher than that from Cu2+. However, the additional Zn2+ could slightly promote the adsorption.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1520
Author(s):  
Inas A. Ahmed ◽  
H. S. Hussein ◽  
Ahmed H. Ragab ◽  
Najlaa S. Al-Radadi

The present investigation is a comparison study of two nanocomposites: Nano-silica-coated oxyhydroxide aluminum (SiO2–AlOOH; SCB) and nano-silica-coated oxyhydroxide aluminum doped with polyaniline (SiO2–AlOOH–PANI; SBDP). The prepared nanocomposites were evaluated by monitoring the elimination of heavy metal Ni(II) ions from aquatic solutions. The synthesized nanocomposites were analyzed and described by applying scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) techniques, as well as Zeta potential distribution. In this study, two adsorbents were applied to investigate their adsorptive capacity to eliminate Ni(II) ions from aqueous solution. The obtained results revealed that SBDP nanocomposite has a higher negative zeta potential value (−47.2 mV) compared with SCB nanocomposite (−39.4 mV). The optimum adsorption was performed at pH 8, with approximately 94% adsorption for SCB and 97% adsorption for SBDP nanocomposites. The kinetics adsorption of Ni ions onto SCB and SBDP nanocomposites was studied by applying the pseudo first-order, pseudo second-order, and Mories–Weber models. The data revealed that the adsorption of Ni ions onto SCB and SBDP nanocomposites followed the pseudo second-order kinetic model. The equilibrium adsorption data were analyzed using three models: Langmuir, Freundlich, and Dubinin–Radusekevisch–Kanager Isotherm. It was concluded that the Langmuir isotherm fits the experimental results well for the SCB and SBDP nanocomposites. Thermodynamic data revealed that the adsorption process using SCB nanocomposites is an endothermic and spontaneous reaction. Meanwhile, the Ni ion sorption on SBDP nanocomposites is exothermic and spontaneous reaction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sauvik Raha ◽  
Dipyaman Mohanta ◽  
Md. Ahmaruzzaman

AbstractIn this work, a nanohybrid of CuO/Mn3O4/ZnO was generated through a simple hydrothermal based procedure. The CuO/Mn3O4/ZnO nanohybrid has been characterized using X-ray diffraction, transmission electron microscopy high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. UV–visible spectrophotometry and photoluminescence techniques allowed evaluation of optical properties that additionally suggested the prevalence of strong interfacial interaction between the three moieties of the nanohybrid and suppressed electron–hole recombination. The hybrid photocatalyst brought on ~ 97.02 ± 1.15% disintegration of rabeprazole when illuminated with visible light. The progress of the photodegradation was in conformity with pseudo-first order kinetic model and had a velocity constant of 0.07773 min−1. Additionally, ~ 84.45% of total organic carbon removal was achieved while chemical oxygen demand was reduced by ~ 73.01%. Using high resolution liquid chromatograph mass spectrometry technique, identification of the degraded products was made and accordingly the mechanistic route of the aforesaid degradation was proposed.


2011 ◽  
Vol 6 (3) ◽  
pp. 155892501100600 ◽  
Author(s):  
Fang Li ◽  
Chunmei Ding

Different degree of deacetylation (DD) chitosan was prepared and used for the removal of a Reactive black M-2R (RBM) from aqueous solution. The effects of temperature (298 K~323 K), chitosan dosage, degree of deacetylation on RBM removal were investigated. The adsorption equilibrium was reached within one hour. In order to determine the adsorption capacity, the sorption data were analyzed by using linear form of Langmuir, Freundlich and Tempkin isotherm equation. Langmuir equation shows higher conformity than the other two equations. From the kinetic experiment data, it was found that the sorption process follows the pseudo-second-order kinetic model. Activation energy value for sorption process was found to be 58.28 kJ mol-1. Chitosan with 66% deacetylation degree (DD) exhibited good adsorption performance for RBM. In order to determine the interactions between RBM and chitosan, FTIR analysis was also conducted.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


2020 ◽  
Vol 81 (6) ◽  
pp. 1114-1129 ◽  
Author(s):  
Jun Wang ◽  
Qinglong Xie ◽  
Ao Li ◽  
Xuejun Liu ◽  
Fengwen Yu ◽  
...  

Abstract In this study, an efficient route to synthesizing polyethyleneimine-modified ultrasonic-assisted acid hydrochar (PEI-USAH) is developed and reported. Ultrasonic irradiation technique was used as surface modification method to shorten the crosslinking reaction for hydrochar and polyethyleneimine (PEI). The PEI-USAH showed an excellent adsorption capacity for Cr(VI) from aqueous solution. The physicochemical properties of this PEI-modified adsorbent were comparatively characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller analysis and CNHS analysis. The effects of contact time, initial pH, and biosorbent dose on adsorption capacities were investigated. The batch adsorption experiments showed that PEI-USAH possessed the maximum adsorption capacities of 94.38 mg/g and 330.84 mg/g for initial Cr(VI) concentration of 100 mg/L and 500 mg/L, respectively. Furthermore, this adsorption process could be fitted to Langmuir adsorption and described by the pseudo second order kinetic model. Based on the above findings, PEI-USAH could be used as a potential adsorbent for removal of Cr(VI) from wastewater.


2015 ◽  
Vol 71 (11) ◽  
pp. 1611-1619 ◽  
Author(s):  
Jun Liu ◽  
Hongyan Du ◽  
Shaowei Yuan ◽  
Wanxia He ◽  
Pengju Yan ◽  
...  

Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T = 293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (–CO−) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document