scholarly journals Calculation Based on the Formation of Mg2Si and Its Effect on the Microstructure and Properties of Al–Si Alloys

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6537
Author(s):  
Jianfei Hao ◽  
Baoyi Yu ◽  
Jiancong Bian ◽  
Bin Chen ◽  
Huishu Wu ◽  
...  

In order to investigate the effect of Mg2Si formation on the microstructure and properties of an Al−Si alloy, the critical point of a hypereutectic Al−17Si−4Cu−Mg alloy was calculated by Pandat software. The calculation results of the equilibrium phase diagram show that the critical point for Mg2Si phase formation for the alloy was obtained when the Mg content was 2.2%. The contents of 0.5 wt.% Mg and 2.5 wt.% Mg were selected as the research object. The content of Mg increased from 0.5 wt.% to 2.5 wt.%, the eutectic Si in the matrix was reduced, and the Chinese character-like Mg2Si phase appeared in the microstructure. In the peak ageing state, in addition to θ” and Q’ phases that were mainly precipitated, there was also needle-like β” precipitation in the 2.5 wt.% Mg content alloy. Larger precipitates were found in 2.5 wt.% content alloys, mainly due to the promotion of the solid solution having the aggregation and segregation of more solute elements in the matrix. The tensile strength, elongation, and hardness of hypereutectic Al−17Si−4Cu−0.5Mg alloy under peak ageing were 331 MPa, 3.11%, and 152.1 HB, respectively. The tensile strength and the elongation decreased while the hardness increased with the 2.5 wt.% Mg content, which is due to the formation of hard and brittle Mg2Si and Al8FeMg3Si, which has a splitting effect on the matrix.

2016 ◽  
Vol 850 ◽  
pp. 768-772 ◽  
Author(s):  
Liu Yi Guan ◽  
Bo Long Li ◽  
Peng Qi ◽  
Li Jun Wei ◽  
Zuo Ren Nie

The as-casted Al-Si-Mg alloy was treated by solution and aging process of 545°C/10h/water cooling plus 175°C/6h /air cooling. The effect of heat treatment on the microstructure and mechanical property of Al-Si-Mg was investigated by metallographic analysis, scanning electron microscopy, energy dispersion spectrum analysis and mechanical testing. The experimental results showed that the alloy had the ultimate tensile strength (UTS) of 317MPa and the elongation of 2%, and suitable for squeezing cast. During solution treatment, the plate-like eutectic Si particles became small granular or short bacilliform morphology, and the non-uniformly distributed eutectic phase was eliminated substantially. In addition, Si particles distributed uniformly and finely in the matrix. The tensile strength of as-casted alloy was 180 MPa, while it was up to 317 MPa after solution and aging treatment process, and the elongation increased from 2% to 3%, which is consistent with the microstructure. Fracture surface analysis showed that fracture mode of the alloy transformed from brittle fracture into co-existence of ductile fracture and brittle fracture during T6 treatment.


2014 ◽  
Vol 1035 ◽  
pp. 272-276
Author(s):  
Run Xia Li ◽  
Qing Li ◽  
Yan Jiao Tong ◽  
Xin Ying Luan ◽  
Zhe Liu ◽  
...  

The effect of heat treatment process on the microstructure and properties of casting Al-5.5Fe-4Cu-2Zn-0.4Mg-0.5Mn alloy were studied. It has been founded that, the mechanicals properties of casting Al-5.5Fe-4Cu-2Zn-0.4Mg-0.5Mn alloy improved significantly after solid solution and aging treated (T6), the tensile strength increased from 173.4MPa to 218.7 MPa. However the mechanical properties of the alloy after aging treated (T1) get less enhanced and the tensile strength only achieved 194.07MPa. The SEM and TEM analysis shows that solid solution treatment plays a role of dissolving the second phases in casting Al-5.5Fe-4Cu-2Zn-0.4Mg-0.5Mn alloy. After solution treatment the alloy was proceed with low-temperature ageing treatment, a large number of dispersively tiny phases precipitated in the matrix of the alloy, which exhibits strengthening action.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4160 ◽  
Author(s):  
Lingling Ren ◽  
Huimin Gu ◽  
Wei Wang ◽  
Shuai Wang ◽  
Chengde Li ◽  
...  

In this study, an Al–Mg alloy was fabricated by wire arc additive manufacture (WAAM), and the effect of Mg content on the microstructure and properties of Al–Mg alloy deposits was investigated. The effects on the deposition surface oxidation, geometry, burn out rate of Mg, pores, microstructure, mechanical properties and fracture mechanisms were investigated. The results show that, when the Mg content increased, the surface oxidation degree increased; a “wave”-shaped deposition layer occurred when the Mg content reached 8%. When the Mg content was more than 6%, the burning loss rate of the Mg element increased significantly. With the increase of Mg content, the number of pores first decreased and then increased, and the size first decreased and then increased. When the Mg content reached 7% or above, obvious crystallization hot cracks appeared in the deposit bodies. When the Mg content increased, the precipitated phase (FeMn)Al6 and β(Mg2Al3) increased, and the grain size increased. When the Mg content was 6%, the comprehensive mechanical properties were best. The horizontal tensile strength, yield strength and elongation were 310 MPa, 225 MPa and 17%, respectively. The vertical tensile strength, yield strength and elongation were 300 MPa, 215 MPa and 15%, respectively. The fracture morphology was a ductile fracture.


Author(s):  
N. V. Larcher ◽  
I. G. Solorzano

It is currently well established that, for an Al-Ag alloy quenched from the α phase and aged within the metastable solvus, the aging sequence is: supersaturated α → GP zones → γ’ → γ (Ag2Al). While GP zones and plate-shaped γ’ are metastable phases, continuously distributed in the matrix, formation of the equilibrium phase γ takes place at grain boundaries by discontinuous precipitation (DP). The crystal structure of both γ’ and γ is hep with the following orientation relationship with respect to the fee α matrix: {0001}γ′,γ // {111}α, <1120>γ′,γ, // <110>α.The mechanisms and kinetics of continuous matrix precipitation (CMP) in dilute Al-Ag alloys have been studied in considerable detail. The quantitative description of DP kinetics, however, has received less attention. The present contribution reports the microstructural evolution resulting from aging an Al-Ag alloy with Ag content higher than those previously reported in the literature, focusing the observations of γ' plate-shaped metastable precipitates.


Author(s):  
W.W. Adams ◽  
S. J. Krause

Rigid-rod polymers such as PBO, poly(paraphenylene benzobisoxazole), Figure 1a, are now in commercial development for use as high-performance fibers and for reinforcement at the molecular level in molecular composites. Spinning of liquid crystalline polyphosphoric acid solutions of PBO, followed by washing, drying, and tension heat treatment produces fibers which have the following properties: density of 1.59 g/cm3; tensile strength of 820 kpsi; tensile modulus of 52 Mpsi; compressive strength of 50 kpsi; they are electrically insulating; they do not absorb moisture; and they are insensitive to radiation, including ultraviolet. Since the chain modulus of PBO is estimated to be 730 GPa, the high stiffness also affords the opportunity to reinforce a flexible coil polymer at the molecular level, in analogy to a chopped fiber reinforced composite. The objectives of the molecular composite concept are to eliminate the thermal expansion coefficient mismatch between the fiber and the matrix, as occurs in conventional composites, to eliminate the interface between the fiber and the matrix, and, hopefully, to obtain synergistic effects from the exceptional stiffness of the rigid-rod molecule. These expectations have been confirmed in the case of blending rigid-rod PBZT, poly(paraphenylene benzobisthiazole), Figure 1b, with stiff-chain ABPBI, poly 2,5(6) benzimidazole, Fig. 1c A film with 30% PBZT/70% ABPBI had tensile strength 190 kpsi and tensile modulus of 13 Mpsi when solution spun from a 3% methane sulfonic acid solution into a film. The modulus, as predicted by rule of mixtures, for a film with this composition and with planar isotropic orientation, should be 16 Mpsi. The experimental value is 80% of the theoretical value indicating that the concept of a molecular composite is valid.


2021 ◽  
pp. 002199832110055
Author(s):  
Zeeshan Ahmad ◽  
Sabah Khan

Alumnium alloy LM 25 based composites reinforced with boron carbide at different weight fractions of 4%, 8%, and 12% were fabricated by stir casting technique. The microstructures and morphology of the fabricated composites were studied by scanning electron microscopy and energy dispersive spectroscopy. Elemental mapping of all fabricated composites were done to demonstrate the elements present in the matrix and fabricated composites. The results of microstructural analyses reveal homogenous dispersion of reinforcement particles in the matrix with some little amount of clustering found in composites reinforced with 12% wt. of boron carbide. The mechanical characterization is done for both alloy LM 25 and all fabricated composites based on hardness and tensile strength. The hardness increased from 13.6% to 21.31% and tensile strength 6.4% to 22.8% as reinforcement percentage of boron carbide particles increased from 0% to 12% wt. A fractured surface mapping was also done for all composites.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 411
Author(s):  
Izabela Miturska ◽  
Anna Rudawska ◽  
Miroslav Müller ◽  
Monika Hromasová

The proper process of preparing an adhesive composition has a significant impact on the degree of dispersion of the composition ingredients in the matrix, as well as on the degree of aeration of the resulting composition, which in turn directly affects the strength and functional properties of the obtained adhesive compositions. The paper presents the results of tensile strength tests and SEM microphotographs of the adhesive composition of Epidian 57 epoxy resin with Z-1 curing agent, which was modified using three fillers NanoBent ZR2 montmorillonite, CaCO3 calcium carbonate and CWZ-22 active carbon. For comparison purposes, samples made of unmodified composition were also tested. The compositions were prepared with the use of six mixing methods, with variable parameters such as type of mixer arm, deaeration and epoxy resin temperature. Then, three mixing speeds were applied: 460, 1170 and 2500 rpm. The analyses of the obtained results showed that the most effective tensile results were obtained in the case of mixing with the use of a dispersing disc mixer with preliminary heating of the epoxy resin to 50 °C and deaeration of the composition during mixing. The highest tensile strength of adhesive compositions was obtained at the highest mixing speed; however, the best repeatability of the results was observed at 1170 rpm mixing speed. Based on a comparison test of average values, it was observed that, in case of modified compositions, the values of average tensile strength obtained at mixing speeds at 1170 and 2500 rpm do not differ significantly with the assumed level of significance α = 0.05.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 184
Author(s):  
Hongwei Zhu ◽  
Haonan Li ◽  
Furen Xiao ◽  
Zhixiang Gao

Self-designed (NbTi)C nanoparticles were obtained by mechanical alloying, predispersed in Fe powder, and then added to 1045 steel to obtain modified cast steels. The microstructure of cast steels was investigated by an optical microscope, scanning electron microscope, X-ray diffraction, and a transmission electron microscope. The results showed that (NbTi)C particles can be added to steels and occur in the following forms: original ellipsoidal morphology nanoparticles with uniform dispersion in the matrix, cuboidal nanoparticles in the grain, and microparticles in the grain boundary. Calculations by Thermo-Calc software and solubility formula show that cuboidal (NbTi)C nanoparticles were precipitated in the grain, while the (NbTi)C microparticles were formed by eutectic transformation. The results of the tensile strength of steels show that the strength of modified steels increased and then declined with the increase in the addition amount. When the addition amount was 0.16 wt.%, the modified steel obtained the maximum tensile strength of 759.0 MPa, which is an increase of 52% compared with to that with no addition. The hardness of the modified steel increased with the addition of (NbTi)C nanoparticles. The performance increase was mainly related to grain refinement and the particle strengthening of (NbTi)C nanoparticles, and the performance degradation was related to the increase in eutectic (NbTi)C.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 461
Author(s):  
Konrad Kosiba ◽  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

The phase and microstructure formation as well as mechanical properties of the rapidly solidified Mg67Ag33 (at. %) alloy were investigated. Owing to kinetic constraints effective during rapid cooling, the formation of equilibrium phases is suppressed. Instead, the microstructure is mainly composed of oversaturated hexagonal closest packed Mg-based dendrites surrounded by a mixture of phases, as probed by X-ray diffraction, electron microscopy and energy dispersive X-ray spectroscopy. A possible non-equilibrium phase diagram is suggested. Mainly because of the fine-grained dendritic and interdendritic microstructure, the material shows appreciable mechanical properties, such as a compressive yield strength and Young’s modulus of 245 ± 5 MPa and 63 ± 2 GPa, respectively. Due to this low Young’s modulus, the Mg67Ag33 alloy has potential for usage as biomaterial and challenges ahead, such as biomechanical compatibility, biodegradability and antibacterial properties are outlined.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


Sign in / Sign up

Export Citation Format

Share Document