scholarly journals Numerical Investigation of Heat Transfer on Unsteady Hiemenz Cu-Water and Ag-Water Nanofluid Flow over a Porous Wedge Due to Solar Radiation

2021 ◽  
Vol 11 (22) ◽  
pp. 10855
Author(s):  
Usman Inayat ◽  
Shaukat Iqbal ◽  
Tareq Manzoor ◽  
Muhammad Fahad Zia

Nanoparticles are generally used to scatter and absorb solar radiations in nanofluid-based direct solar receivers to efficiently transport and store the heat. However, solar energy absorption in nanofluid can be enhanced by using differential materials and tuning nanofluid parameter. In this regard, theoretical investigations of unsteady homogeneous Hiemenz flow of an incompressible nanofluid having copper and silver nanoparticles over a porous wedge is carried out by using optimal homotopy asymptotic method (OHAM). Hence, a semi-analytical solver is applied to the transformed system to study the significance of magnetic field along with Prandtl number. In this work, impacts of conductive radiations, heat sink/source, unsteadiness, and flow parameters have been investigated for velocity and temperature profiles of copper and silver nanoparticles-based nanofluid. The effects of magnetic strength, volume fraction of nanoparticles, thermal conductivity, and flow parameters have also been studied on the considered nanofluids.

2021 ◽  
Vol 26 (1) ◽  
pp. 122-134
Author(s):  
P. Pramod Kumar ◽  
Bala Siddulu Malga ◽  
Lakshmi Appidi ◽  
Sweta Matta

AbstractThe principal objective of the present paper is to know the reaction of thermal radiation and the effects of magnetic fields on a viscous dissipative free convection fluid flow past an inclined infinite plate in the presence of an induced magnetic field. The Galerkin finite element technique is applied to solve the nonlinear coupled partial differential equations and effects of thermal radiation and other physical and flow parameters on velocity, induced magnetic field, along with temperature profiles are explained through graphs. It is noticed that as the thermal radiation increases velocity and temperature profiles decrease and the induced magnetic field profiles increases.


2017 ◽  
Vol 21 (5) ◽  
pp. 2095-2104 ◽  
Author(s):  
Mohammadreza Azimi ◽  
Rouzbeh Riazi

The steady 2-D heat transfer and flow between two non-parallel walls of a graphene oxide nanofluid in presence of uniform magnetic field are investigated in this paper. The analytical solution of the non-linear problem is obtained by Galerkin optimal homotopy asymptotic method. At first a similarity transformation is used to reduce the partial differential equations modeling the flow and heat transfer to ordinary non-linear differential equation systems containing the semi angle between the plate?s parameter, Reynolds number, the magnetic field strength, nanoparticle volume fraction, Eckert and Prandtl numbers. Finally, the obtained analytical results have been compared with results achieved from previous works in some cases.


2021 ◽  
Vol 11 (4) ◽  
pp. 1722
Author(s):  
Nidal Abu-Libdeh ◽  
Fares Redouane ◽  
Abderrahmane Aissa ◽  
Fateh Mebarek-Oudina ◽  
Ahmad Almuhtady ◽  
...  

In this study, a new cavity form filled under a constant magnetic field by Ag/MgO/H2O nanofluids and porous media consistent with natural convection and total entropy is examined. The nanofluid flow is considered to be laminar and incompressible, while the advection inertia effect in the porous layer is taken into account by adopting the Darcy–Forchheimer model. The problem is explained in the dimensionless form of the governing equations and solved by the finite element method. The results of the values of Darcy (Da), Hartmann (Ha) and Rayleigh (Ra) numbers, porosity (εp), and the properties of solid volume fraction (ϕ) and flow fields were studied. The findings show that with each improvement in the Ha number, the heat transfer rate becomes more limited, and thus the magnetic field can be used as an outstanding heat transfer controller.


2020 ◽  
Vol 15 ◽  

A theoretical study is made to investigate heat and mass transfer analysis on the single phase flow of an electrically conducting, Al2O3-Water nanofluid over a linearly stretching sheet in presence of Soret and Dufour effects. An applied magnetic field is considered normal to the flow, while the effect of induced magnetic field got neglected for small magnetic Reynolds number’s value of the flow field relative to the applied field. Since voltage difference at the lateral ends of the sheet is very small, the influence of the electric field is thus omitted. The governing equations representing the physical model of the fluid flow is solved by means of DTM-Padé approximations. The acquired results show that an increase in the Soret number (Dufour number) decreases (increases) the temperature profiles but increases (decreases) the concentration profiles. The axial velocity profiles found decreasing with increasing values of the magnetic parameter. Both chemical reaction and thermal radiation parameters maximize the temperature profiles whereas a reverse phenomenon is seen on concentration profiles. The obtained tables show that increasing nanoparticle volume fraction escalates skin-friction coefficient, Nusselt number and Sherwood number whereas an increase in Richardson number decreases the Nusselt number but increases the Sherwood number.


2020 ◽  
Vol 15 ◽  

A theoretical study is made to investigate heat and mass transfer analysis on the single phase flow of an electrically conducting, Al2O3-Water nanofluid over a linearly stretching sheet in presence of Soret and Dufour effects. An applied magnetic field is considered normal to the flow, while the effect of induced magnetic field got neglected for small magnetic Reynolds number’s value of the flow field relative to the applied field. Since voltage difference at the lateral ends of the sheet is very small, the influence of the electric field is thus omitted. The governing equations representing the physical model of the fluid flow is solved by means of DTM-Padé approximations. The acquired results show that an increase in the Soret number (Dufour number) decreases (increases) the temperature profiles but increases (decreases) the concentration profiles. The axial velocity profiles found decreasing with increasing values of the magnetic parameter. Both chemical reaction and thermal radiation parameters maximize the temperature profiles whereas a reverse phenomenon is seen on concentration profiles. The obtained tables show that increasing nanoparticle volume fraction escalates skin-friction coefficient, Nusselt number and Sherwood number whereas an increase in Richardson number decreases the Nusselt number but increases the Sherwood number.


2017 ◽  
Vol 17 (01) ◽  
pp. 1750003
Author(s):  
MICHALIS XENOS ◽  
ANASTASIOS RAPTIS

The migration of Red Blood Cells (RBCs) from the wall towards the center of a narrow vessel is the result of the Fahraeus–Lindqvist effect which contemplates the dependence of viscosity and diameter. The kinetic theory explains the formation of the near-wall cell-depleted layer introducing the granular temperature that is defined as the mean square of RBCs fluctuations. The proposed mathematical model elucidates the effect of an externally applied magnetic field on the velocity and granular temperature of RBCs in a microvasculature. The effect of the volume fraction of RBCs on the velocity and granular temperature profiles is also presented and discussed. Based on the insight of the kinetic theory, the application of a stronger static magnetic field probably leads to a restriction of the migration process of RBCs towards the center of the microvessel.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2250
Author(s):  
M. M. Rashidi ◽  
M. Sadri ◽  
M. A. Sheremet

In this study, the energy transference of a hybrid Al2O3-Cu-H2O nanosuspension within a lid-driven heated square chamber is simulated. The domain is affected by a horizontal magnetic field. The vertical sidewalls are insulated and the horizontal borders of the chamber are held at different fixed temperatures. A fourth-order accuracy compact method is applied to work out the vorticity-stream function view of incompressible Oberbeck–Boussinesq equations. The method used is validated against previous numerical and experimental works and good agreement is shown. The flow patterns, Nusselt numbers, and velocity profiles are studied for different Richardson numbers, Hartmann numbers, and the solid volume fraction of hybrid nanoparticles. Flow field and heat convection are highly affected by the magnetic field and volume fraction of each type of nanoparticles in a hybrid nanofluid. The results show an improvement of heat transfer using nanoparticles. To achieve a higher heat transmission rate by using the hybrid nanofluid, flow parameters like Richardson number and Hartmann number should be considered.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
Muhammad Akhtar

Abstract A mathematical model is envisioned to discourse the impact of Thompson and Troian slip boundary in the carbon nanotubes suspended nanofluid flow near a stagnation point along an expanding/contracting surface. The water is considered as a base fluid and both types of carbon nanotubes i.e., single-wall (SWCNTs) and multi-wall (MWCNTs) are considered. The flow is taken in a Dacry-Forchheimer porous media amalgamated with quartic autocatalysis chemical reaction. Additional impacts added to the novelty of the mathematical model are the heat generation/absorption and buoyancy effect. The dimensionless variables led the envisaged mathematical model to a physical problem. The numerical solution is then found by engaging MATLAB built-in bvp4c function for non-dimensional velocity, temperature, and homogeneous-heterogeneous reactions. The validation of the proposed mathematical model is ascertained by comparing it with a published article in limiting case. An excellent consensus is accomplished in this regard. The behavior of numerous dimensionless flow variables including solid volume fraction, inertia coefficient, velocity ratio parameter, porosity parameter, slip velocity parameter, magnetic parameter, Schmidt number, and strength of homogeneous/heterogeneous reaction parameters are portrayed via graphical illustrations. Computational iterations for surface drag force are tabulated to analyze the impacts at the stretched surface. It is witnessed that the slip velocity parameter enhances the fluid stream velocity and diminishes the surface drag force. Furthermore, the concentration of the nanofluid flow is augmented for higher estimates of quartic autocatalysis chemical.


2021 ◽  
Vol 13 (9) ◽  
pp. 5086
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Ali J. Chamkha

Single and double impinging jets heat transfer of non-Newtonian power law nanofluid on a partly curved surface under the inclined magnetic field effects is analyzed with finite element method. The numerical work is performed for various values of Reynolds number (Re, between 100 and 300), Hartmann number (Ha, between 0 and 10), magnetic field inclination (γ, between 0 and 90), curved wall aspect ratio (AR, between 01. and 1.2), power law index (n, between 0.8 and 1.2), nanoparticle volume fraction (ϕ, between 0 and 0.04) and particle size in nm (dp, between 20 and 80). The amount of rise in average Nusselt (Nu) number with Re number depends upon the power law index while the discrepancy between the Newtonian fluid case becomes higher with higher values of power law indices. As compared to case with n = 1, discrepancy in the average Nu number are obtained as −38% and 71.5% for cases with n = 0.8 and n = 1.2. The magnetic field strength and inclination can be used to control the size and number or vortices. As magnetic field is imposed at the higher strength, the average Nu reduces by about 26.6% and 7.5% for single and double jets with n greater than 1 while it increases by about 4.78% and 12.58% with n less than 1. The inclination of magnetic field also plays an important role on the amount of enhancement in the average Nu number for different n values. The aspect ratio of the curved wall affects the flow field slightly while the average Nu variation becomes 5%. Average Nu number increases with higher solid particle volume fraction and with smaller particle size. At the highest particle size, it is increased by about 14%. There is 7% variation in the average Nu number when cases with lowest and highest particle size are compared. Finally, convective heat transfer performance modeling with four inputs and one output is successfully obtained by using Adaptive Neuro-Fuzzy Interface System (ANFIS) which provides fast and accurate prediction results.


Sign in / Sign up

Export Citation Format

Share Document