scholarly journals Combinatorial interactions between viral proteins expand the functional landscape of the viral proteome

2021 ◽  
Author(s):  
Liping Wang ◽  
Huang Tan ◽  
Laura Medina-Puche ◽  
Mengshi Wu ◽  
Borja Garnelo Gomez ◽  
...  

As intracellular parasites, viruses need to manipulate the molecular machinery of their host cells in order to enable their own replication and spread. This manipulation is based on the activity of virus-encoded proteins. The reduced size of viral genomes imposes restrictions in coding capacity; how the action of the limited number of viral proteins results in the massive cell reprogramming observed during the viral infection is a long-standing conundrum in virology. In this work, we explore the hypothesis that combinatorial interactions expand the multifunctionality of viral proteins, which may exert different activities individually and when in combination, physical or functional. We show that the proteins encoded by a plant-infecting DNA virus physically associate with one another in an intricate network. Our results further demonstrate that these interactions can modify the subcellular localization of the viral proteins involved, and that co-expressed interacting viral proteins can exert novel biological functions in planta that go beyond the sum of their individual functions. Based on this, we propose a model in which combinatorial physical and functional interactions between viral proteins enlarge the functional landscape of the viral proteome, which underscores the importance of studying the role of viral proteins in the context of the infection.

2006 ◽  
Vol 81 (3) ◽  
pp. 1297-1304 ◽  
Author(s):  
Alexis H. Broquet ◽  
Christelle Lenoir ◽  
Agnès Gardet ◽  
Catherine Sapin ◽  
Serge Chwetzoff ◽  
...  

ABSTRACT Previous studies demonstrated that the induction of the heat shock protein Hsp70 in response to viral infection is highly specific and differs from one cell to another and for a given virus type. However, no clear consensus exists so far to explain the likely reasons for Hsp70 induction within host cells during viral infection. We show here that upon rotavirus infection of intestinal cells, Hsp70 is indeed rapidly, specifically, and transiently induced. Using small interfering RNA-Hsp70-transfected Caco-2 cells, we observed that Hsp70 silencing was associated with an increased virus protein level and enhanced progeny virus production. Upon Hsp70 silencing, we observed that the ubiquitination of the main rotavirus structural proteins was strongly reduced. In addition, the use of proteasome inhibitors in infected Caco-2 cells was shown to induce an accumulation of structural viral proteins. Together, these results are consistent with a role of Hsp70 in the control of the bioavailability of viral proteins within cells for virus morphogenesis.


2021 ◽  
Author(s):  
Dominique Soldati-Favre ◽  
Nicolas Dos Santos Pacheco ◽  
Nicolò Tosetti ◽  
Aarti Krishnan ◽  
Romuald Haase

Toxoplasma gondii ERK7 is known to contribute to the integrity of the apical complex and to be involved only in the final step of the conoid biogenesis. In the absence of ERK7, mature parasites lose their conoid complex and are unable to glide, invade or egress from host cells. In contrast to a previous report, we show here that depletion of ERK7 phenocopies the depletion of the apical cap proteins AC9 or AC10. The absence of ERK7 leads to the loss of the apical polar ring, the disorganization of the basket of subpellicular microtubules and an impairment in micronemes secretion. Ultra-expansion microscopy (U-ExM) coupled to NHS-Ester staining on intracellular parasites offers an unprecedented level of resolution and highlights the disorganization of the rhoptries as well as the dilated plasma membrane at the apical pole in the absence of ERK7. Comparative proteomics analysis of wild-type and ERK7 or AC9 depleted parasites led to the disappearance of known, predicted, as well as putative novel components of the apical complex. In contrast, the absence of ERK7 led to an accumulation of microneme proteins, resulting from the defect in exocytosis of the organelles.


2009 ◽  
Vol 117 (2) ◽  
pp. 49-65 ◽  
Author(s):  
Hengli Tang ◽  
Henry Grisé

HCV (hepatitis C virus) infects nearly 3% of the population worldwide and has emerged as a major causative agent of liver disease, resulting in acute and chronic infections that can lead to fibrosis, cirrhosis and hepatocellular carcinoma. Hepatitis C represents the leading cause of liver transplantation in the United States and Europe. A positive-strand RNA virus of the Flaviviridae family, HCV contains a single-stranded RNA genome of approx. 9600 nucleotides. The genome RNA serves as both mRNA for translation of viral proteins and the template for RNA replication. Cis-acting RNA elements within the genome regulate RNA replication by forming secondary structures that interact with each other and trans-acting factors. Although structural proteins are clearly dispensable for RNA replication, recent evidence points to an important role of several non-structural proteins in particle assembly and release, turning their designation on its head. HCV enters host cells through receptor-mediated endocytosis, and the process requires the co-ordination of multiple cellular receptors and co-receptors. RNA replication takes place at specialized intracellular membrane structures called ‘membranous webs’ or ‘membrane-associated foci’, whereas viral assembly probably occurs on lipid droplets and endoplasmic reticulum. Liver inflammation plays a central role in the liver damage seen in hepatitis C, but many HCV proteins also directly contribute to HCV pathogenesis. In the present review, the molecular and cellular aspects of the HCV life cycle and the role of viral proteins in pathological liver conditions caused by HCV infection are described.


2015 ◽  
Vol 90 (1) ◽  
pp. 553-561 ◽  
Author(s):  
Livia Donaire ◽  
József Burgyán ◽  
Fernando García-Arenal

ABSTRACTThe multiplicity of infection (MOI), i.e., the number of viral genomes that infect a cell, is an important parameter in virus evolution, which for each virus and environment may have an optimum value that maximizes virus fitness. Thus, the MOI might be controlled by virus functions, an underexplored hypothesis in eukaryote-infecting viruses. To analyze if the MOI is controlled by virus functions, we estimated the MOI in plants coinfected by two genetic variants ofTomato bushy stunt virus(TBSV); by TBSV and a TBSV-derived defective interfering RNA (DI-RNA); or by TBSV and a second tombusvirus,Cymbidium ringspot virus(CymRSV). The MOI was significantly larger in TBSV-CymRSV coinfections (∼4.0) than in TBSV-TBSV or TBSV–DI-RNA coinfections (∼1.7 to 2.2). Coinfections by CymRSV or TBSV with chimeras in which an open reading frame (ORF) of one virus species was replaced by that of the other identified a role of viral proteins in determining the MOI, which ranged from 1.6 to 3.9 depending on the coinfecting genotypes. However, no virus-encoded protein or genomic region was the sole MOI determinant. Coinfections by CymRSV and TBSV mutants in which the expression of the gene-silencing suppressor protein p19 was abolished also showed a possible role of gene silencing in MOI determination. Taken together, these results demonstrate that the MOI is a quantitative trait showing continuous variation and that as such it has a complex determination involving different virus-encoded functions.IMPORTANCEThe number of viral genomes infecting a cell, or the multiplicity of infection (MOI), is an important parameter in virus evolution affecting recombination rates, selection intensity on viral genes, evolution of multipartite genomes, or hyperparasitism by satellites or defective interfering particles. For each virus and environment, the MOI may have an optimum value that maximizes virus fitness, but little is known about MOI control in eukaryote-infecting viruses. We show here that in plants coinfected by two genotypes ofTomato bushy stunt virus(TBSV), the MOI was lower than in plants coinfected by TBSV andCymbidium ringspot virus(CymRSV). Coinfections by CymRSV or TBSV with TBSV-CymRSV chimeras showed a role of viral proteins in MOI determination. Coinfections by CymRSV and TBSV mutants not expressing the gene-silencing suppressor protein also showed a role of gene silencing in MOI determination. The results demonstrate that the MOI is a quantitative trait with a complex determination involving different viral functions.


Pathogens ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 148 ◽  
Author(s):  
Hussin A. Rothan ◽  
Mukesh Kumar

Flavivirus replication in host cells requires the formation of replication and assembly complexes on the cytoplasmic side of the endoplasmic reticulum (ER) membrane. These complexes consist of an ER membrane, viral proteins, and host proteins. Genome-wide investigations have identified a number of ER multiprotein complexes as vital factors for flavivirus replication. The detailed mechanisms of the role of ER complexes in flavivirus replication are still largely elusive. This review highlights the fact that the ER multiprotein complexes are crucial for the formation of flavivirus replication and assembly complexes, and the ER complexes could be considered as a target for developing successful broad-spectrum anti-flavivirus drugs.


2020 ◽  
Author(s):  
Emmanuelle Genoyer ◽  
Katarzyna Kulej ◽  
Chuan Tien Hung ◽  
Patricia A. Thibault ◽  
Kristopher Azarm ◽  
...  

ABSTRACTParamyxoviruses are negative sense single-stranded RNA viruses that comprise many important human and animal pathogens, including human parainfluenza viruses. These viruses bud from the plasma membrane of infected cells after the viral ribonucleoprotein complex (vRNP) is transported from the cytoplasm to the cell membrane via Rab11a-marked recycling endosomes. The viral proteins that are critical for mediating this important initial step in viral assembly are unknown. Here we use the model paramyxovirus, murine parainfluenza virus 1, or Sendai virus (SeV), to investigate the roles of viral proteins in Rab11a-driven virion assembly. We previously reported that infection with SeV containing high levels of copy-back defective viral genomes (DVGs) generates heterogenous populations of cells. Cells enriched in full-length virus produce viral particles containing standard or defective viral genomes, while cells enriched in DVGs do not, despite high levels of defective viral genome replication. Here we take advantage of this heterogenous cell phenotype to identify proteins that mediate interaction of vRNPs with Rab11a. We examine the role of matrix protein and nucleoprotein and determine that they are not sufficient to drive interaction of vRNPs with recycling endosomes. Using a combination of mass spectrometry and comparative protein abundance and localization in DVG- and FL-high cells, we identify viral polymerase complex components L and, specifically, its cofactor C proteins as interactors with Rab11a. We find that accumulation of these proteins within the cell is the defining feature that differentiates cells that proceed to viral egress from cells which remain in replication phases.IMPORTANCEParamyxoviruses are a family of viruses that include a number of pathogens with significant burdens on human health. Particularly, human parainfluenza viruses are an important cause of pneumonia and bronchiolitis in children for which there are no vaccines or direct acting antivirals. These cytoplasmic replicating viruses bud from the plasma membrane and coopt cellular endosomal recycling pathways to traffic viral ribonucleoprotein complexes from the cytoplasm to the membrane of infected cells. The viral proteins required for viral engagement with the recycling endosome pathway are still not known. Here we use the model paramyxovirus Sendai virus, or murine parainfluenza virus 1, to investigate the role of viral proteins in this initial step of viral assembly. We find that viral polymerase components large protein L and accessory C proteins are necessary for engagement with recycling endosomes. These findings are important in identifying viral proteins as potential targets for development of antivirals.


2004 ◽  
Vol 72 (4) ◽  
pp. 1920-1928 ◽  
Author(s):  
Pascale Kropf ◽  
Marina A. Freudenberg ◽  
Manuel Modolell ◽  
Helen P. Price ◽  
Shanti Herath ◽  
...  

ABSTRACT The essential role of Toll-like receptors (TLR) in innate immune responses to bacterial pathogens is increasingly recognized, but very little is known about the role of TLRs in host defense against infections with eukaryotic pathogens. For the present study, we investigated whether TLRs contribute to the innate and acquired immune response to infection with the intracellular protozoan parasite Leishmania major. Our results show that TLR4 contributes to the control of parasite growth in both phases of the immune response. We also addressed the mechanism that results in killing or growth of the intracellular parasites. Control of parasite replication correlates with the early induction of inducible nitric oxide synthase in TLR4-competent mice, whereas increased parasite survival in host cells from TLR4-deficient mice correlates with a higher activity of arginase, an enzyme known to promote parasite growth. This is the first study showing that TLR4 contributes to the effective control of Leishmania infection in vivo.


Author(s):  
Xiaonan Jia ◽  
Yiqian Yin ◽  
Yiwen Chen ◽  
Lingxiang Mao

Exosomes are membrane-bound vesicles of endocytic origin, secreted into the extracellular milieu, in which various biological components such as proteins, nucleic acids, and lipids reside. A variety of external stimuli can regulate the formation and secretion of exosomes, including viruses. Viruses have evolved clever strategies to establish effective infections by employing exosomes to cloak their viral genomes and gain entry into uninfected cells. While most recent exosomal studies have focused on clarifying the effect of these bioactive vesicles on viral infection, the mechanisms by which the virus regulates exosomes are still unclear and deserve further attention. This article is devoted to studying how viral components regulate exosomes biogenesis, composition, and secretion.


Author(s):  
Suelen da Silva Gomes Dias ◽  
Vinicius Cardoso Soares ◽  
André C. Ferreira ◽  
Carolina Q. Sacramento ◽  
Natalia Fintelman-Rodrigues ◽  
...  

AbstractViruses are obligate intracellular parasites that make use of the host metabolic machineries to meet their biosynthetic needs, identifying the host pathways essential for the virus replication may lead to potential targets for therapeutic intervention. The mechanisms and pathways explored by SARS-CoV-2 to support its replication within host cells are not fully known. Lipid droplets (LD) are organelles with major functions in lipid metabolism and energy homeostasis, and have multiple roles in infections and inflammation. Here we described that monocytes from COVID-19 patients have an increased LD accumulation compared to SARS-CoV-2 negative donors. In vitro, SARS-CoV-2 infection modulates pathways of lipid synthesis and uptake, including CD36, SREBP-1, PPARγ and DGAT-1 in monocytes and triggered LD formation in different human cells. LDs were found in close apposition with SARS-CoV-2 proteins and double-stranded (ds)-RNA in infected cells. Pharmacological modulation of LD formation by inhibition of DGAT-1 with A922500 significantly inhibited SARS-CoV-2 replication as well as reduced production of pro-inflammatory mediators. Taken together, we demonstrate the essential role of lipid metabolic reprograming and LD formation in SARS-CoV-2 replication and pathogenesis, opening new opportunities for therapeutic strategies to COVID-19.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Alessio Valletta ◽  
Lorenzo Maria Iozia ◽  
Francesca Leonelli

Stilbenes are a small family of polyphenolic secondary metabolites that can be found in several distantly related plant species. These compounds act as phytoalexins, playing a crucial role in plant defense against phytopathogens, as well as being involved in the adaptation of plants to abiotic environmental factors. Among stilbenes, trans-resveratrol is certainly the most popular and extensively studied for its health properties. In recent years, an increasing number of stilbene compounds were subjected to investigations concerning their bioactivity. This review presents the most updated knowledge of the stilbene biosynthetic pathway, also focusing on the role of several environmental factors in eliciting stilbenes biosynthesis. The effects of ultraviolet radiation, visible light, ultrasonication, mechanical stress, salt stress, drought, temperature, ozone, and biotic stress are reviewed in the context of enhancing stilbene biosynthesis, both in planta and in plant cell and organ cultures. This knowledge may shed some light on stilbene biological roles and represents a useful tool to increase the accumulation of these valuable compounds.


Sign in / Sign up

Export Citation Format

Share Document