scholarly journals Experimental Social Stress: Dopaminergic Receptors, Oxidative Stress, and c-Fos Protein Are Involved in Highly Aggressive Behavior

2021 ◽  
Vol 15 ◽  
Author(s):  
Renata M. Felippe ◽  
Gabriel M. Oliveira ◽  
Rafaela S. Barbosa ◽  
Betina D. Esteves ◽  
Beatriz M. S. Gonzaga ◽  
...  

Aggression is defined as hostile behavior that results in psychological damage, injury and even death among individuals. When aggression presents itself in an exacerbated and constant way, it can be considered escalating or pathological. The association between social stress and the emergence of exacerbated aggressiveness is common and is suggested to be interconnected through very complex neurobiological factors. For example, alterations in the expression of the dopaminergic receptors D1 and D2, reactive oxygen species (ROS) and the c-Fos protein in the cortex have been observed. Our objective was to analyze which factors are involved at the neurobiological level in the highly aggressive response of Swiss Webster adult male mice in a vivarium. In this work, we investigated the relationship among dopaminergic receptors, the production of ROS and the expression of c-Fos. Mice with exacerbated aggression were identified by the model of spontaneous aggression (MSA) based on the grouping of young mice and the regrouping of the same animals in adulthood. During the regrouping, we observed different categories of behavior resulting from social stress, such as (i) highly aggressive animals, (ii) defeated animals, and (iii) harmonic groups. To evaluate the dopaminergic system and the c-Fos protein, we quantified the expression of D1 and D2 dopaminergic receptors by Western blotting and fluorescence immunohistochemistry and that of the c-Fos protein by fluorescence immunohistochemistry. The possible production of ROS was also evaluated through the dihydroethidium (DHE) assay. The results showed that aggressive and subordinate mice showed a reduction in the expression of the D1 receptor, and no significant difference in the expression of the D2 receptor was observed between the groups. In addition, aggressive mice exhibited increased production of ROS and c-Fos protein. Based on our results, we suggest that exacerbated aggression is associated with social stress, dysregulation of the dopaminergic system and exacerbated ROS production, which leads to a state of cellular oxidative stress. The overexpression of c-Fos due to social stress suggests an attempt by the cell to produce antioxidant agents to reduce the toxic cellular concentration of ROS.

2020 ◽  
Vol 16 (5) ◽  
pp. 743-748
Author(s):  
Ana R.S. de Oliveira ◽  
Kyria J.C. Cruz ◽  
Jennifer B.S. Morais ◽  
Juliana S. Severo ◽  
Jéssica B. Beserra ◽  
...  

Background: The role of minerals in preventing the generation of oxidative stress in obese individuals has been evaluated. Magnesium is an antioxidant nutrient and a cofactor of enzymes involved in the cell membrane stabilization, attenuating the effects of oxidative stress. Objective: To evaluate the association between magnesium and concentrations of thiobarbituric acid reactive substances (TBARS) in patients with obesity and eutrophic women. Methods: A cross-sectional study was conducted with 73 women, divided into two groups: case group (patients with obesity, n=27) and control group (eutrophic women, n=46). Measurements of body mass index and waist circumference were performed. Dietary magnesium intake was assessed by the three-day food record using the NutWin software. Urinary magnesium concentration was measured by atomic absorption spectrophotometry method. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) were also determined. Results: Mean values of dietary magnesium intake were 161.59 ± 60.04 and 158.73 ± 31.96 for patients with obesity and control group, respectively, with no significant difference between the groups studied (p >0.05). The value of urinary excretion of magnesium was lower than the reference values in both groups, with no significant difference between the groups studied (p >0.05). The plasma concentration of thiobarbituric acid reactive substances was significantly higher in patients with obesity compared to the control group (p <0.001). There was no correlation between levels of magnesium biomarkers and the concentration of TBARS (p >0.05). Conclusion: Patients with obesity showed a reduced dietary magnesium intake which seems to induce hypomagnesuria as a compensatory mechanism. The marker of oxidative stress evaluated in this study was not influenced by magnesium.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1332
Author(s):  
Gilda M. Iova ◽  
Horia Calniceanu ◽  
Adelina Popa ◽  
Camelia A. Szuhanek ◽  
Olivia Marcu ◽  
...  

Background: There is a growing interest in the correlation between antioxidants and periodontal disease. In this study, we aimed to investigate the effect of oxidative stress and the impact of two antioxidants, curcumin and rutin, respectively, in the etiopathology of experimentally induced periodontitis in diabetic rats. Methods: Fifty Wistar albino rats were randomly divided into five groups and were induced with diabetes mellitus and periodontitis: (1) (CONTROL)—control group, (2) (DPP)—experimentally induced diabetes mellitus and periodontitis, (3) (DPC)—experimentally induced diabetes mellitus and periodontitis treated with curcumin (C), (4) (DPR)—experimentally induced diabetes mellitus and periodontitis treated with rutin (R) and (5) (DPCR)—experimentally induced diabetes mellitus and periodontitis treated with C and R. We evaluated malondialdehyde (MDA) as a biomarker of oxidative stress and reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG and catalase (CAT) as biomarkers of the antioxidant capacity in blood harvested from the animals we tested. The MDA levels and CAT activities were also evaluated in the gingival tissue. Results: The control group effect was statistically significantly different from any other groups, regardless of whether or not the treatment was applied. There was also a significant difference between the untreated group and the three treatment groups for variables MDA, GSH, GSSG, GSH/GSSG and CAT. There was no significant difference in the mean effect for the MDA, GSH, GSSG, GSH/GSSG and CAT variables in the treated groups of rats with curcumin, rutin and the combination of curcumin and rutin. Conclusions: The oral administration of curcumin and rutin, single or combined, could reduce the oxidative stress and enhance the antioxidant status in hyperglycemic periodontitis rats.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suvanjaa Sivalingam ◽  
Emil List Larsen ◽  
Daniel H. van Raalte ◽  
Marcel H. A. Muskiet ◽  
Mark M. Smits ◽  
...  

AbstractGlucagon-like peptide 1 receptor agonists have shown cardioprotective effects which have been suggested to be mediated through inhibition of oxidative stress. We investigated the effect of treatment with a glucagon-like peptide 1 receptor agonist (liraglutide) on oxidative stress measured as urinary nucleic acid oxidation in persons with type 2 diabetes. Post-hoc analysis of two independent, randomised, placebo-controlled and double-blinded clinical trials. In a cross-over study where persons with type 2 diabetes and microalbuminuria (LIRALBU, n = 32) received liraglutide (1.8 mg/day) or placebo for 12 weeks in random order, separated by 4 weeks of wash-out. In a parallel-grouped study where obese persons with type 2 diabetes (SAFEGUARD, n = 56) received liraglutide (1.8 mg/day), sitagliptin (100 mg/day) or placebo for 12 weeks. Endpoints were changes in the urinary markers of DNA oxidation (8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG)) and RNA oxidation [8-oxo-7,8-dihydroguanosine (8-oxoGuo)]. In LIRALBU, we observed no significant differences between treatment periods in urinary excretion of 8-oxodG [0.028 (standard error (SE): 0.17] nmol/mmol creatinine, p = 0.87) or of 8-oxoGuo [0.12 (0.12) nmol/mmol creatinine, p = 0.31]. In SAFEGUARD, excretion of 8-oxodG was not changed in the liraglutide group [2.8 (− 8.51; 15.49) %, p = 0.62] but a significant decline was demonstrated in the placebo group [12.6 (− 21.3; 3.1) %, p = 0.02], resulting in a relative increase in the liraglutide group compared to placebo (0.16 nmol/mmol creatinine, SE 0.07, p = 0.02). Treatment with sitagliptin compared to placebo demonstrated no significant difference (0.07 (0.07) nmol/mmol creatinine, p = 0.34). Nor were any significant differences for urinary excretion of 8-oxoGuo liraglutide vs placebo [0.09 (SE: 0.07) nmol/mmol creatinine, p = 0.19] or sitagliptin vs placebo [0.07 (SE: 0.07) nmol/mmol creatinine, p = 0.35] observed. This post-hoc analysis could not demonstrate a beneficial effect of 12 weeks of treatment with liraglutide or sitagliptin on oxidatively generated modifications of nucleic acid in persons with type 2 diabetes.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3799
Author(s):  
Tim J. Fyfe ◽  
Peter J. Scammells ◽  
J. Robert Lane ◽  
Ben Capuano

(1) Background: Two first-in-class racemic dopamine D1 receptor (D1R) positive allosteric modulator (PAM) chemotypes (1 and 2) were identified from a high-throughput screen. In particular, due to its selectivity for the D1R and reported lack of intrinsic activity, compound 2 shows promise as a starting point toward the development of small molecule allosteric modulators to ameliorate the cognitive deficits associated with some neuropsychiatric disease states; (2) Methods: Herein, we describe the enantioenrichment of optical isomers of 2 using chiral auxiliaries derived from (R)- and (S)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (d- and l-pantolactone, respectively); (3) Results: We confirm both the racemate and enantiomers of 2 are active and selective for the D1R, but that the respective stereoisomers show a significant difference in their affinity and magnitude of positive allosteric cooperativity with dopamine; (4) Conclusions: These data warrant further investigation of asymmetric syntheses of optically pure analogues of 2 for the development of D1R PAMs with superior allosteric properties.


2020 ◽  
pp. 1-9
Author(s):  
Keum-Ah Lee ◽  
Youngnam Kim ◽  
Hossein Alizadeh ◽  
David W.M. Leung

Abstract Seed priming with water (hydropriming or HP) has been shown to be beneficial for seed germination and plant growth. However, there is little information on the effects of seed priming with amino acids and casein hydrolysate (CH) compared with HP, particularly in relation to early post-germinative seedling growth under salinity stress. In this study, Italian ryegrass seeds (Lolium multiflorum L.) were primed with 1 mM of each of the 20 protein amino acids and CH (200 mg l−1) before they were germinated in 0, 60 and 90 mM NaCl in Petri dishes for 4 d in darkness. Germination percentage (GP), radicle length (RL) and peroxidase (POD) activity in the root of 4-d-old Italian ryegrass seedlings were investigated. Generally, when the seeds were germinated in 0, 60 and 90 mM NaCl, there was no significant difference in GP of seeds among various priming treatments, except that a higher GP was observed in seeds of HP treatment compared with the non-primed seeds when incubated in 60 mM NaCl. When incubated in 60 and 90 mM NaCl, seedlings from seeds primed with L-methionine or CH exhibited greater RL (greater protection against salinity stress) and higher root POD activity than those from non-primed and hydro-primed seeds. Under salinity stress, there were higher levels of malondialdehyde (MDA) in the root of 4-d-old Italian ryegrass seedlings, a marker of oxidative stress, but seed priming with CH was effective in reducing the salinity-triggered increase in MDA content. These results suggest that priming with L-methionine or CH would be better than HP for the protection of seedling root growth under salinity stress and might be associated with enhanced antioxidative defence against salinity-induced oxidative stress.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 296
Author(s):  
Rosa Vona ◽  
Nadia Maria Sposi ◽  
Lorenza Mattia ◽  
Lucrezia Gambardella ◽  
Elisabetta Straface ◽  
...  

Sickle cell disease (SCD) is the most common hereditary disorder of hemoglobin (Hb), which affects approximately a million people worldwide. It is characterized by a single nucleotide substitution in the β-globin gene, leading to the production of abnormal sickle hemoglobin (HbS) with multi-system consequences. HbS polymerization is the primary event in SCD. Repeated polymerization and depolymerization of Hb causes oxidative stress that plays a key role in the pathophysiology of hemolysis, vessel occlusion and the following organ damage in sickle cell patients. For this reason, reactive oxidizing species and the (end)-products of their oxidative reactions have been proposed as markers of both tissue pro-oxidant status and disease severity. Although more studies are needed to clarify their role, antioxidant agents have been shown to be effective in reducing pathological consequences of the disease by preventing oxidative damage in SCD, i.e., by decreasing the oxidant formation or repairing the induced damage. An improved understanding of oxidative stress will lead to targeted antioxidant therapies that should prevent or delay the development of organ complications in this patient population.


2009 ◽  
Vol 17 (14) ◽  
pp. 4873-4880 ◽  
Author(s):  
Jing Zhang ◽  
Hai Zhang ◽  
Wenxian Cai ◽  
Leiping Yu ◽  
Xuechu Zhen ◽  
...  

2017 ◽  
Vol 11 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Irini P. Chatziralli ◽  
George Theodossiadis ◽  
Prodromos Dimitriadis ◽  
Michail Charalambidis ◽  
Antonios Agorastos ◽  
...  

Background:Several studies have focused on oxidative stress on diabetes mellitus (DM). Our purpose was to investigate the impact of oxidative stress on progression of diabetic retinopathy (DR) in insulin-dependenttype 2DM patients, measuring serum malondialdehyde (MDA), as well as to examine the effect of vitamin E on DR progression in the above-mentioned patients.Methods:Participants in the study were 282 insulin-dependenttype 2DM patients with DR. All participants underwent a thorough ophthalmological examination, so as to grade DR, along with serum MDA measurement. All participants received 300mg vitamin E daily for 3 months and were examined again. Serum MDA pre- and post-intake of Vitamin E was the main outcome.Results:Serum MDA was positively associated with DR stage, while there was a statistically significant difference pre- and post-intake of vitamin E in all DR stages. In a subgroup analysis of patients with proliferative DR, there was a significant difference at baseline between patients who have received prior laser photocoagulation and the treatment naïve patients, while after intake of vitamin E, no statistically significant difference was noticed.Conclusion:Oxidative stress has been found to play significant role in the pathogenesis and progression of DR, while vitamin E seems to reduce MDA levels and subsequent oxidative stress, suggesting that it might have protective role in DR progression.


2021 ◽  
Vol 6 (1) ◽  
pp. 179-181
Author(s):  
Rusdiana ◽  
Muhammad Syahputra ◽  
Sry Suryani

Preliminary : Endothelial cells are a single layer that lines the entire vascular system. Endothelial dysfunction can be triggered by several main things, namely physical stress, oxidative stress and irritant substances. Obesity triggers an inflammatory process and metabolic disorders that will lead to increased oxidative stress. Long-term oxidative stress will cause damage to cells and tissues and trigger degenerative diseases. Damage to endothelial cells is expected to be detected by examining Von Willenbrand levels so that it can prevent complications of vascular disorders early. Method: This research is descriptive with cross sectional design. Carried out from March to October 2018 on the USU Campus. The first examination was done to measure body weight and height to determine body mass index, then performed lipid profile and blood sugar levels (KGD) in the sample, then examined von Willenbrand factor levels carried out in the integrated laboratory of USU FK using the method ELISA in both the sample group and the control group. The research subjects were adolescents aged 17-25 years with BMI> 25 kg / m2Data analysis was carried out using the T-Test statistical program, comparing two groups. Result: Of the 40 obese subjects found Von Wilenbrand level values ​​The lowest factor was 1.78 IU / ml and the highest was 35.60 IU / ml. Whereas in 40 non-obese subjects Von Wilenbrand grade values ​​were the lowest factor of 2.01 IU / ml and the highest was 45.10 IU / ml. This difference was not statistically significant (p = 0.661).Conclusion: There was no significant difference between the levels of Von Wilenbrand Factors in obese subjects with non-obese subjectsKey Words: Obesity, endothelial cells, Von Wilenbrand Factors


2020 ◽  
Vol 20 (1) ◽  
pp. 247
Author(s):  
Nur Insani ◽  
H.M.T Kamaluddin ◽  
Swanny Swanny

Glutathione (GSH) transferase deficiency due to paracetamol exposure causes further oxidative stress to liver necrosis. To reduce oxidative stress that can cause damage to the liver of the body requires antioxidants. One plant to treat liver disease is the kelor leaf (because it has an active flavonoid material also has antioxidant activity). This study was conducted to determine the difference of glutathione hepar levels of male white rat induced paracetamol toxic dose by giving kelor leaf extract. The type of research is experimental laboratory in vivo with rancagan randomized post test only control group design. With the stages as follows 1.Leaf Extract Kelor with Ethanol 96%, 2.Perpeteration of experimental animals, 3.Treatment of experimental animals by giving extract of 3-dose of kelor leaf that is KP I 250 mg / 200 gr BB rat, KP II 500 mg / 200 gr BB rat, KP III 1000 mg / 200 gr BB rat  for 14 days combined with paracetamol dose 2 gr / 200 gr BB rat compared with the negative control group (group given only paracetamol dose 2 gr / 200 gr BB rat) and control group positif only fed regular feed for 14 days). The result showed that there was a significant difference mean of GSH levels between all treatment groups obtained p = 0,000 (p <α) p values smaller than 0.05. There was the highest increase of GSH in treatment group II (142,7525 μmol / mg) and lowest dose of GSH in positive control group (57,1812 μmol / mg), dose paracetamol toxic dosage and kelor leaf extract 500 mg / gr BB rat can increase GSH hepar p = 0,000 (p <α) p less than 0 , 05. The conclusion of the test results showed that giving of kelor leaf extract at dose of treatment group II can increase GSH hepar level significantly


Sign in / Sign up

Export Citation Format

Share Document