scholarly journals New Method to Evaluate the Crosslinking Degree of Resin Finishing Agent with Cellulose Using Kjeldahl Method and Arrhenius Formula

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 767
Author(s):  
Jiangfei Lou ◽  
Jinfang Zhang ◽  
Shengxiang Xu ◽  
Dan Wang ◽  
Xuerong Fan

In anti-wrinkle finishing, the crosslinking degree of fabric is mainly determined by wrinkle recovery angle, stiffness, and viscosity, these indicators can only reflect the finishing effect from a macro perspective, which cannot reflect whether the crosslinking is sufficient, and it is difficult to quantify the crosslinking degree. In this paper, we combined the Kjeldahl method with the Arrhenius formula and proposed a method to analyze the crosslinking degree of dimethyloldihydroxyethyleneurea (two-dimensional (2D) resin) with cotton cellulose during delayed-cure finishing for the first time. The nitrogen content of completed fabrics during storage was measured by the Kjeldahl method, and the reaction rate equation of the 2D resin and cellulose under normal temperature conditions was calculated. The results show that the nitrogen content is more suitable to indicate the crosslinking degree, and the apparent activation energy was 28.271 kJ/mol and the pre-finger factor was 0.622, which indicated that the 2D resin was prone to cross-linking with cotton fabrics during storage. During long-term storage, the relative errors between the calculated and measured values of the nitrogen content were within ±5%, and the accuracy was higher than the traditional evaluation method. The stability of 2D resins during the storage of delayed-curing finishing was also analyzed through this method.

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jeongmoo Huh ◽  
Botchu V. S. Jyoti ◽  
Yongtae Yun ◽  
M. N. Shoaib ◽  
Sejin Kwon

In regard to propulsion system applications, the stability of liquid propellants in long-term storage is of increasing importance, and this had led to a greater interest in gelation technology. As part of a preliminary test to determine the feasibility of using a gel propellant in a rocket with a catalyst bed, a hybrid rocket with a catalyst reactor using a gel propellant as an oxidizer was tested for the first time in this study. Experiments were conducted with two different oxidizers: one with liquid phase hydrogen peroxide and the other with gel phase hydrogen peroxide, as well as high-density polyethylene as fuel for a 250 N class hybrid thruster performance test. The thruster was designed with the catalyst ignition system, and a catalyst was manufactured to be inserted into the catalyst reactor to facilitate oxidizer decomposition. While the test result with neat hydrogen peroxide indicated sufficient decomposition efficiency using a manganese dioxide/alumina catalyst and successful autoignition of the fuel via the decomposed product, gel hydrogen peroxide exhibited insufficient decomposition and there were difficulties in operating the thruster as a part of the catalyst was covered in the gelling agent. This preliminary study identifies the potential challenges of using a gel phase oxidizer in a catalyst ignited hybrid thruster and discusses the technical issues that should be addressed in regard to a gel propellant hybrid thruster design with a catalyst reactor.


2019 ◽  
Author(s):  
Tatiana Woller ◽  
Ambar Banerjee ◽  
Nitai Sylvetsky ◽  
Xavier Deraet ◽  
Frank De Proft ◽  
...  

<p>Expanded porphyrins provide a versatile route to molecular switching devices due to their ability to shift between several π-conjugation topologies encoding distinct properties. Taking into account its size and huge conformational flexibility, DFT remains the workhorse for modeling such extended macrocycles. Nevertheless, the stability of Hückel and Möbius conformers depends on a complex interplay of different factors, such as hydrogen bonding, p···p stacking, steric effects, ring strain and electron delocalization. As a consequence, the selection of an exchange-correlation functional for describing the energy profile of topological switches is very difficult. For these reasons, we have examined the performance of a variety of wavefunction methods and density functionals for describing the thermochemistry and kinetics of topology interconversions across a wide range of macrocycles. Especially for hexa- and heptaphyrins, the Möbius structures have a pronouncedly stronger degree of static correlation than the Hückel and figure-eight structures, and as a result the relative energies of singly-twisted structures are a challenging test for electronic structure methods. Comparison of limited orbital space full CI calculations with CCSD(T) calculations within the same active spaces shows that post-CCSD(T) correlation contributions to relative energies are very minor. At the same time, relative energies are weakly sensitive to further basis set expansion, as proven by the minor energy differences between MP2/cc-pVDZ and explicitly correlated MP2-F12/cc-pVDZ-F12 calculations. Hence, our CCSD(T) reference values are reasonably well-converged in both 1-particle and n-particle spaces. While conventional MP2 and MP3 yield very poor results, SCS-MP2 and particularly SOS-MP2 and SCS-MP3 agree to better than 1 kcal mol<sup>-1</sup> with the CCSD(T) relative energies. Regarding DFT methods, only M06-2X provides relative errors close to chemical accuracy with a RMSD of 1.2 kcal mol<sup>-1</sup>. While the original DSD-PBEP86 double hybrid performs fairly poorly for these extended p-systems, the errors drop down to 2 kcal mol<sup>-1</sup> for the revised revDSD-PBEP86-NL, again showing that same-spin MP2-like correlation has a detrimental impact on performance like the SOS-MP2 results. </p>


Author(s):  
Farshad BahooToroody ◽  
Saeed Khalaj ◽  
Leonardo Leoni ◽  
Filippo De Carlo ◽  
Gianpaolo Di Bona ◽  
...  

Geosynthetics are extensively utilized to improve the stability of geotechnical structures and slopes in urban areas. Among all existing geosynthetics, geotextiles are widely used to reinforce unstable slopes due to their capabilities in facilitating reinforcement and drainage. To reduce settlement and increase the bearing capacity and slope stability, the classical use of geotextiles in embankments has been suggested. However, several catastrophic events have been reported, including failures in slopes in the absence of geotextiles. Many researchers have studied the stability of geotextile-reinforced slopes (GRSs) by employing different methods (analytical models, numerical simulation, etc.). The presence of source-to-source uncertainty in the gathered data increases the complexity of evaluating the failure risk in GRSs since the uncertainty varies among them. Consequently, developing a sound methodology is necessary to alleviate the risk complexity. Our study sought to develop an advanced risk-based maintenance (RBM) methodology for prioritizing maintenance operations by addressing fluctuations that accompany event data. For this purpose, a hierarchical Bayesian approach (HBA) was applied to estimate the failure probabilities of GRSs. Using Markov chain Monte Carlo simulations of likelihood function and prior distribution, the HBA can incorporate the aforementioned uncertainties. The proposed method can be exploited by urban designers, asset managers, and policymakers to predict the mean time to failures, thus directly avoiding unnecessary maintenance and safety consequences. To demonstrate the application of the proposed methodology, the performance of nine reinforced slopes was considered. The results indicate that the average failure probability of the system in an hour is 2.8×10−5 during its lifespan, which shows that the proposed evaluation method is more realistic than the traditional methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yu Zheng ◽  
Xudong Luo ◽  
Jinlong Yang ◽  
Wenlong Huo ◽  
Chi Kang

A novel approach is used for fabricating steel slag foam ceramics based on the particle-stabilized foaming method. In this work, steel slag was used as the raw material and propyl gallate (PG) was used as the surface modifier. For the first time, steel slag ceramic foams were successfully fabricated based on particle-stabilized foams. The results show that the stability of the ceramic foams was closely related to the pH value and PG concentration. The porosity and compressive strength could be controlled by changing the solid loading of steel slag and sintering temperature. The porosity of steel slag foam ceramics ranged from 85.6% to 62.53%, and the compressive strength was from 1.74 MPa to 10.42 MPa. The thermal conductivity of steel slag foam ceramics was only 0.067 W (m·K)−1, which shows that it could be used as a thermal insulation material.


2003 ◽  
Vol 69 (7) ◽  
pp. 4012-4018 ◽  
Author(s):  
Ariel Maoz ◽  
Ralf Mayr ◽  
Siegfried Scherer

ABSTRACT The temporal stability and diversity of bacterial species composition as well as the antilisterial potential of two different, complex, and undefined microbial consortia from red-smear soft cheeses were investigated. Samples were collected twice, at 6-month intervals, from each of two food producers, and a total of 400 bacterial isolates were identified by Fourier-transform infrared spectroscopy and 16S ribosomal DNA sequence analysis. Coryneform bacteria represented the majority of the isolates, with certain species being predominant. In addition, Marinolactobacillus psychrotolerans, Halomonas venusta, Halomonas variabilis, Halomonas sp. (106 to 107 CFU per g of smear), and an unknown, gram-positive bacterium (107 to 108 CFU per g of smear) are described for the first time in such a consortium. The species composition of one consortium was quite stable over 6 months, but the other consortium revealed less diversity of coryneform species as well as less stability. While the first consortium had a stable, extraordinarily high antilisterial potential in situ, the antilisterial activity of the second consortium was lower and decreased with time. The cause for the antilisterial activity of the two consortia remained unknown but is not due to the secretion of soluble, inhibitory substances by the individual components of the consortium. Our data indicate that the stability over time and a potential antilisterial activity are individual characteristics of the ripening consortia which can be monitored and used for safe food production without artificial preservatives.


2017 ◽  
Vol 107 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Wayne M. Jurick ◽  
Otilia Macarisin ◽  
Verneta L. Gaskins ◽  
Eunhee Park ◽  
Jiujiang Yu ◽  
...  

Botrytis cinerea causes gray mold and is an economically important postharvest pathogen of fruit, vegetables, and ornamentals. Fludioxonil-sensitive B. cinerea isolates were collected in 2011 and 2013 from commercial storage in Pennsylvania. Eight isolates had values for effective concentrations for inhibiting 50% of mycelial growth of 0.0004 to 0.0038 μg/ml for fludioxonil and were dual resistant to pyrimethanil and thiabendazole. Resistance was generated in vitro, following exposure to a sublethal dose of fludioxonil, in seven of eight dual-resistant B. cinerea isolates. Three vigorously growing B. cinerea isolates with multiresistance to postharvest fungicides were further characterized and found to be osmosensitive and retained resistance in the absence of selection pressure. A representative multiresistant B. cinerea strain caused decay on apple fruit treated with postharvest fungicides, which confirmed the in vitro results. The R632I mutation in the Mrr1 gene, associated with fludioxonil resistance in B. cinerea, was not detected in multipostharvest fungicide-resistant B. cinerea isolates, suggesting that the fungus may be using additional mechanisms to mediate resistance. Results from this study show for the first time that B. cinerea with dual resistance to pyrimethanil and thiabendazole can also rapidly develop resistance to fludioxonil, which may pose control challenges in the packinghouse environment and during long-term storage.


2021 ◽  
Author(s):  
Megan Payne ◽  
Olga Tsaponina ◽  
Gillian Caalim ◽  
Hayley Greenfield ◽  
Leanne Milton-Harris ◽  
...  

Wnt signalling is an evolutionary conserved signal transduction pathway heavily implicated in normal development and disease. The central mediator of this pathway, β-catenin, is frequently overexpressed, mislocalised and overactive in acute myeloid leukaemia (AML) where it mediates the establishment, maintenance and drug resistance of leukaemia stem cells. Critical to the stability, localisation and activity of β-catenin are the protein-protein interactions it forms, yet these are poorly defined in AML. We recently performed the first β-catenin interactome study in blood cells of any kind and identified a plethora of novel interacting partners. This study shows for the first time that β-catenin interacts with Wilms tumour protein (WT1), a protein frequently overexpressed and mutated in AML, in both myeloid cell lines and also primary AML samples. We demonstrate crosstalk between the signalling activity of these two proteins in myeloid cells, and show that modulation of either protein can affect expression of the other. Finally, we demonstrate that WT1 mutations frequently observed in AML can increase stabilise β-catenin and augment Wnt signalling output. This study has uncovered new context-dependent molecular interactions for β-catenin which could inform future therapeutic strategies to target this dysregulated molecule in AML.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jingru Ren ◽  
Chenxi Pan ◽  
Yuqian Li ◽  
Lanting Li ◽  
Ping Hua ◽  
...  

ObjectivePatients with Parkinson’s disease (PD) are commonly classified into subtypes based on motor symptoms. The aims of the present study were to determine the consistency between PD motor subtypes, to assess the stability of PD motor subtypes over time, and to explore the variables influencing PD motor subtype stability.MethodsThis study was part of a longitudinal study of de novo PD patients at a single center. Based on three different motor subtype classification systems proposed by Jankovic, Schiess, and Kang, patients were respectively categorized as tremor-dominant/indeterminate/postural instability and gait difficulty (TD/indeterminate/PIGD), TDS/mixedS/akinetic-rigidS (ARS), or TDK/mixedK/ARK at baseline evaluation and then re-assessed 1 month later. Demographic and clinical characteristics were recorded at each evaluation. The consistency between subtypes at baseline evaluation was assessed using Cohen’s kappa coefficient (κ). Additional variables were compared between PD subtype groups using the two-sample t-test, Mann–Whitney U-test or Chi-squared test.ResultsOf 283 newly diagnosed, untreated PD patients, 79 were followed up at 1 month. There was fair agreement between the Jankovic, Schiess, and Kang classification systems (κS = 0.383 ± 0.044, κK = 0.360 ± 0.042, κSK = 0.368 ± 0.038). Among the three classification systems, the Schiess classification was the most stable and the Jankovic classification was the most unstable. The non-motor symptoms questionnaire (NMSQuest) scores differed significantly between PD patients with stable and unstable subtypes based on the Jankovic classification (p = 0.008), and patients with a consistent subtype had more severe NMSQuest scores than patients with an inconsistent subtype.ConclusionFair consistency was observed between the Jankovic, Schiess, and Kang classification systems. For the first time, non-motor symptoms (NMSs) scores were found to influence the stability of the TD/indeterminate/PIGD classification. Our findings support combining NMSs with motor symptoms to increase the effectiveness of PD subtypes.


Sign in / Sign up

Export Citation Format

Share Document