scholarly journals Metabolomics to Diagnose Oxidative Stress in Perinatal Asphyxia: Towards a Non-Invasive Approach

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1753
Author(s):  
Anne Lee Solevåg ◽  
Svetlana N. Zykova ◽  
Per Medbøe Thorsby ◽  
Georg M. Schmölzer

There is a need for feasible and non-invasive diagnostics in perinatal asphyxia. Metabolomics is the study of small molecular weight products of cellular metabolism that may, directly and indirectly, reflect the level of oxidative stress. Saliva analysis is a novel approach that has a yet unexplored potential in metabolomics in perinatal asphyxia. The aim of this review was to give an overview of metabolomics studies of oxidative stress in perinatal asphyxia, particularly searching for studies analyzing non-invasively collected biofluids including saliva. We searched the databases PubMed/Medline and included 11 original human and 4 animal studies. In perinatal asphyxia, whole blood, plasma, and urine are the most frequently used biofluids used for metabolomics analyses. Although changes in oxidative stress-related salivary metabolites have been reported in adults, the utility of this approach in perinatal asphyxia has not yet been explored. Human and animal studies indicate that, in addition to antioxidant enzymes, succinate and hypoxanthine, as well acylcarnitines may have discriminatory diagnostic and prognostic properties in perinatal asphyxia. Researchers may utilize the accumulating evidence of discriminatory metabolic patterns in perinatal asphyxia to develop bedside methods to measure oxidative stress metabolites in perinatal asphyxia. Although only supported by indirect evidence, saliva might be a candidate biofluid for such point-of-care diagnostics.

Author(s):  
Ricardo Dzul-Caamal ◽  
Lucia Salazar-Coria ◽  
Hugo F. Olivares-Rubio ◽  
Maria Alejandra Rocha-Gómez ◽  
Manuel Iván Girón-Pérez ◽  
...  

GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 875-884
Author(s):  
Naeem Z Azeemi ◽  
Riktesh Srivastava ◽  
Meraj Naem ◽  
Ghassan Al Utaibi ◽  
Omar al Basheer ◽  
...  

Despite the diversity in application of spectroscopic techniques ranging from pharmaceutical industries, food and beverage or petrochemical industries; scientific data produced by these instrument is still limited in accuracy and errors associated with the luminescence. Unlike Chemical Force Microscopy (CFM), non-invasive instrumentation provides reliable and precise control in Industrial Process Regulation (IPR), where a chemical compound is always a point-of-care. Additionally, growing trends in analytical instrumentation towards Lab-On-a-Chip (LOC) has shift the manufacturer’s emphasis on sensitivity as well as robustness.  Though expensive, but imaging spectrometer characterize a process or an object over a large range of luminescence  such as Visual, Ultra-Violet (UV), Near Infra-Red (NIR), Infra-Red (IR), and Raman, to name a few.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5607
Author(s):  
Victor M. Carriere ◽  
Jolin P. Rodrigues ◽  
Chao Tan ◽  
Prabhu Arumugam ◽  
Scott Poh

Oxidative stress, an excess of endogenous or exogenous reactive oxygen species (ROS) in the human body, is closely aligned with inflammatory responses. ROS such as hydrogen peroxide (H2O2), superoxide, and radical hydroxyl ions serve essential functions in fighting infection; however, chronic elevation of these species irreversibly damages cellular components. Given the central role of inflammation in a variety of diseases, including Alzheimer’s disease and rheumatoid arthritis, a low-cost, extracellular, non-invasive assay of H2O2 measurement is needed. This work reports the use of a platinum microelectrode array (Pt MEA)-based ceramic probe to detect time- and concentration-dependent variations in H2O2 production by activated RAW 264.7 macrophages. First, these cells were activated by lipopolysaccharide (LPS) to induce oxidative stress. Chronoamperometry was then employed to detect the quantity of H2O2 released by cells at various time intervals up to 48 h. The most stimulatory concentration of LPS was identified. Further experiments assessed the anti-inflammatory effect of dexamethasone (Dex), a commonly prescribed steroid medication. As expected, the probe detected significantly increased H2O2 production by LPS-doped macrophages, subsequently diminishing the pro-inflammatory effect in LPS-doped cells treated with Dex. These results strongly support the use of this probe as a non-invasive, robust, point-of-care test of inflammation, with a high potential for multiplexing in further studies.


2019 ◽  
Author(s):  
Weng Kung Peng ◽  
Lan Chen ◽  
Bernhard O Boehm ◽  
Jongyoon Han ◽  
Tze Ping Loh

AbstractDiabetes mellitus is one of the fastest growing health burdens globally. Oxidative stress which has been implicated to the pathogenesis of diabetes complication (e.g., cardiovascular event) were, however, poorly understood. We report a novel approach to rapidly manipulate the redox chemistry (in a single drop) of blood using point-of-care NMR system. We exploit the fact that oxidative stress changes the subtle molecular motion of water-proton in the blood, and thus inducing a measurable shift in magnetic resonance relaxation properties. This technique is label-free and the whole assays finish in a few minutes. Various redox states of the hemoglobin were mapped out using our newly proposed two-dimensional map, known as T1-T2 magnetic state diagram. We demonstrated the clinical utilities of this technique to rapidly sub-stratify diabetes subjects based on their oxidative status (in conjunction to the traditional glycemic level), to improve the patient risk stratification and thus the overall outcome of clinical diabetes care and management. (155 words)Key Points for SummariesA novel approach to rapidly manipulate the redox chemistry (in a single drop) of blood using point-of-care NMR system.Assessment of the oxidative status, in conjunction to their glycemic level allows sub-stratification of diabetes subjects which was demonstrated clinically.Visual Abstract


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


2019 ◽  
Vol 16 (4) ◽  
pp. 344-352
Author(s):  
Radhika Khosla ◽  
Avijit Banik ◽  
Sushant Kaushal ◽  
Priya Battu ◽  
Deepti Gupta ◽  
...  

Background: Cancer is a common disease caused by the excessive proliferation of cells, and neurodegenerative diseases are the disorders caused due to the degeneration of neurons. Both can be considered as diseases caused by the dysregulation of cell cycle events. A recent data suggests that there is a strong inverse association between cancer and neurodegenerative disorders. There is indirect evidence to postulate Brain-derived Neurotrophic Factor (BDNF) as a potential molecular link in this association. Discussion: The BDNF levels are found to be downregulated in many neurodegenerative disorders and are found to be upregulated in various kinds of cancers. The lower level of BDNF in Alzheimer’s and Parkinson’s disease has been found to be related to cognitive and other neuropsychological impairments, whereas, its higher levels are associated with the tumour growth and metastasis and poor survival rate in the cancer patients. Conclusion: In this review, we propose that variance in BDNF levels is critical in determining the course of cellular pathophysiology and the development of cancer or neurodegenerative disorder. We further propose that an alternative therapeutic strategy that can modulate BDNF expression, can rescue or prevent above said pathophysiological course. Larger studies that examine this link through animal studies are imperative to understand the putative biochemical and molecular link to wellness and disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Levente Kovács ◽  
Fruzsina Luca Kézér ◽  
Szilárd Bodó ◽  
Ferenc Ruff ◽  
Rupert Palme ◽  
...  

AbstractThe intensity and the magnitude of saliva cortisol responses were investigated during the first 48 h following birth in newborn dairy calves which underwent normal (eutocic, EUT, n = 88) and difficult (dystocic, DYS, n = 70) calvings. The effects of parity and body condition of the dam, the duration of parturition, the time spent licking the calf, the sex and birth weight of the calf were also analyzed. Neonatal salivary cortisol concentrations were influenced neither by factors related to the dam (parity, body condition) nor the calf (sex, birth weight). The duration of parturition and the time spent licking the calf also had no effect on salivary cortisol levels. Salivary cortisol concentrations increased rapidly after delivery in both groups to reach their peak levels at 45 and 60 min after delivery in EUT and DYS calves, respectively supporting that the birth process means considerable stress for calves and the immediate postnatal period also appears to be stressful for newborn calves. DYS calves exhibited higher salivary cortisol concentrations compared to EUT ones for 0 (P = 0.022), 15 (P = 0.016), 30 (P = 0.007), 45 (P = 0.003), 60 (P = 0.001) and 120 min (P = 0.001), and for 24 h (P = 0.040), respectively. Peak levels of salivary cortisol and the cortisol release into saliva calculated as AUC were higher in DYS than in EUT calves for the 48-h of the sampling period (P = 0.009 and P = 0.003, respectively). The greater magnitude of saliva cortisol levels in DYS calves compared to EUT ones suggest that difficult parturition means severe stress for bovine neonates and salivary cortisol could be an opportunity for non-invasive assessment of stress during the early neonatal period in cattle.


2021 ◽  
Vol 9 (7) ◽  
pp. 1463
Author(s):  
Tamirat Tefera Temesgen ◽  
Kristoffer Relling Tysnes ◽  
Lucy Jane Robertson

Cryptosporidium oocysts are known for being very robust, and their prolonged survival in the environment has resulted in outbreaks of cryptosporidiosis associated with the consumption of contaminated water or food. Although inactivation methods used for drinking water treatment, such as UV irradiation, can inactivate Cryptosporidium oocysts, they are not necessarily suitable for use with other environmental matrices, such as food. In order to identify alternative ways to inactivate Cryptosporidium oocysts, improved methods for viability assessment are needed. Here we describe a proof of concept for a novel approach for determining how effective inactivation treatments are at killing pathogens, such as the parasite Cryptosporidium. RNA sequencing was used to identify potential up-regulated target genes induced by oxidative stress, and a reverse transcription quantitative PCR (RT-qPCR) protocol was developed to assess their up-regulation following exposure to different induction treatments. Accordingly, RT-qPCR protocols targeting thioredoxin and Cryptosporidium oocyst wall protein 7 (COWP7) genes were evaluated on mixtures of viable and inactivated oocysts, and on oocysts subjected to various potential inactivation treatments such as freezing and chlorination. The results from the present proof-of-concept experiments indicate that this could be a useful tool in efforts towards assessing potential technologies for inactivating Cryptosporidium in different environmental matrices. Furthermore, this approach could also be used for similar investigations with other pathogens.


Sign in / Sign up

Export Citation Format

Share Document