scholarly journals Study the Electrical Properties of Surface Mount Device Integrated Silver Coated Vectran Yarn

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 272
Author(s):  
Abdella Ahmmed Simegnaw ◽  
Benny Malengier ◽  
Melkie Getnet Tadesse ◽  
Gideon Rotich ◽  
Lieva Van Langenhove

Smart textiles have attracted huge attention due to their potential applications for ease of life. Recently, smart textiles have been produced by means of incorporation of electronic components onto/into conductive metallic yarns. The development, characterizations, and electro-mechanical testing of surface mounted electronic device (SMD) integrated E-yarns is still limited. There is a vulnerability to short circuits as non-filament conductive yarns have protruding fibers. It is important to determine the best construction method and study the factors that influence the textile properties of the base yarn. This paper investigated the effects of different external factors, namely, strain, solder pad size, temperature, abrasion, and washing on the electrical resistance of SMD integrated silver-coated Vectran (SCV) yarn. For this, a Vectran E-yarn was fabricated by integrating the SMD resistor into a SCV yarn by applying a vapor phase reflow soldering method. The results showed that the conductive gauge length, strain, overlap solder pad size, temperature, abrasion, and washing had a significant effect on the electrical resistance property of the SCV E-yarn. In addition, based on the experiment, the E-yarn made from SCV conductive thread and 68 Ω SMD resistor had the maximum electrical resistance and power of 72.16 Ω and 0.29 W per 0.31 m length. Therefore, the structure of this E-yarn is also expected to bring great benefits to manufacturing wearable conductive tracks and sensors.

2012 ◽  
Vol 7 (4) ◽  
pp. 155892501200700 ◽  
Author(s):  
Rong Liu ◽  
Shuxiao Wang ◽  
Terence T. Lao

This paper presents a novel solution for monitoring incontinence status through the design and development of the intelligent incontinence pants by the use of conductive yarns and incorporating advanced circular seamless knitting technology. The produced textile incorporates wire and electrodes by conductive yarn working with a siren system which can monitor, sense and alert the wearer and care provider on the incontinence status in real time so as to reduce the need for manual checking and minimize patient care workload. The engineered stitches, yarn materials, and unique seamless knitting techniques provide soft handling, special fabric mechanisms, and tactile comfort of the resulting product. The electrical resistance of knitted conductive yarn demonstrated a stable performance in wet processing. Fitting body trials were conducted to estimate product dimension and configuration. This study allows us to explore further the potential applications of conductive yarn and seamless knitting technology in bio-functional and intelligent healthcare products and solutions through integrating multidisciplinary knowledge and techniques.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3390
Author(s):  
Željko Knezić ◽  
Željko Penava ◽  
Diana Šimić Penava ◽  
Dubravko Rogale

Electrically conductive yarns (ECYs) are gaining increasing applications in woven textile materials, especially in woven sensors suitable for incorporation into clothing. In this paper, the effect of the yarn count of ECYs woven into fabric on values of electrical resistance is analyzed. We also observe how the direction of action of elongation force, considering the position of the woven ECY, effects the change in the electrical resistance of the electrically conductive fabric. The measurements were performed on nine different samples of fabric in a plain weave, into which were woven ECYs with three different yarn counts and three different directions. Relationship curves between values of elongation forces and elongation to break, as well as relationship curves between values of electrical resistance of fabrics with ECYs and elongation, were experimentally obtained. An analytical mathematical model was also established, and analysis was conducted, which determined the models of function of connection between force and elongation, and between electrical resistance and elongation. The connection between the measurement results and the mathematical model was confirmed. The connection between the mathematical model and the experimental results enables the design of ECY properties in woven materials, especially textile force and elongation sensors.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 311 ◽  
Author(s):  
Hammad R. Khalid ◽  
Iqra Choudhry ◽  
Daeik Jang ◽  
Nadir Abbas ◽  
M. Salman Haider ◽  
...  

Flexible electronic devices have gained significant interest due to their different potential applications. Herein, we report highly flexible, stretchable, and sensitive sensors made of sprayed CNT layer, sandwiched between two polymer layers. A facile fabrication process was employed in which the CNT solution was directly sprayed onto a patterned bottom polymer layer, above which a second polymer layer was casted to get a sandwiched composite structure. Varying amounts of CNT solution (i.e., 10, 25, 40, 70, and 100 mL) were sprayed to get conductive CNT layers of different thicknesses/densities. The physical characteristics of the conductive CNT layers were studied through SEM and optical images. The starting electrical resistance values (without strain) as well as the changes in electrical resistance against human body motions were monitored. The synthesized samples exhibited good response against finger and wrist bending. The conductivity of the samples increased with increase of CNT solution volume while the sensitivity followed the inverse relation, suggesting that the sensors with controlled sensitivity could be fabricated for targeted strain ranges using the proposed method.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092130
Author(s):  
Ya-Chu Chang

The field of electronic device applications is becoming more and more extensive. With the development of science and technology and the improvement of the integration of electronic components, local heating is becoming more and more serious. If heat cannot be discharged immediately, it will cause heat to accumulate, causing the temperature of each component to exceed the limit. The reliability of electronic equipment is greatly reduced. Especially in important fields such as military and aerospace, the thermal reliability of electronic components is higher. The research results show that increasing the Reynolds number is helpful to reduce the overall temperature and thermal resistance of the heat sink, but the increase of the Reynolds number and the decrease of the thermal resistance value are gradually flat. The design concept of material reduction has a significant impact on processing and cost. The results of this article show that selecting the appropriate heat sink fins and matching the specific Reynolds number can effectively improve the heat transfer performance of the heat sink.


2020 ◽  
pp. 152808372091441
Author(s):  
Gizem Kayabaşı ◽  
Özgü Özen ◽  
Demet Yılmaz

Electronic or conductive textiles have attracted particular attention because of their potential applications in the fields of energy storage, supercapacitors, solar cells, health care devices, etc. Contrary to solid materials, the properties of textile materials such as stretchability, foldability, washability, etc. make the textiles ideal support materials for electronic devices. Therefore, in recent years, various conductive materials and production methods have been researched extensively to make the textiles conductive. In the present study, an alternative method based on imparting the conductivity to the fiber-based structure for the production of conductive textiles was established. Considering the contribution of unique characteristics of the fiber-based structure to the clothing systems, imparting the conductivity to the fibrous structure before yarn and fabric production may help to protect the breathable, lightweight, softness, deformable and washable of textile structure, and hence to improve the wearability properties of the electronic textiles. In the study, carbon black nanoparticles were selected as a conductive material due to low cost and easy procurable while cotton fiber together with other fiber types such as polyester, acrylic and viscose rayon fibers were used due to their common usage in the textile industry. In addition, various production parameters (CB concentration, feeding rate, etc.) were analyzed and the results indicated that the developed alternative method is capable to produce conductive yarns and electrical resistance of the yarns was about 94–4481 kΩ. The yarns had comparable yarn tenacity and breaking elongation properties, and still carried conductive character even after washing. In literature, there has been no effort to get conductivity in this manner and the method can be considered to be a new application for added-on or built-in future wearable electronics. Also, in the study, produced conductive yarns were used as a collector to gather the nanofibers onto the yarn to produce hybrid yarns enabling the production of functional textile products.


2012 ◽  
Vol 82 (20) ◽  
pp. 2062-2070 ◽  
Author(s):  
Li Li ◽  
Song Liu ◽  
Feng Ding ◽  
Tao Hua ◽  
Wai Man Au ◽  
...  

Conductive fabrics usually exhibit two types of electrical resistance: the length-related resistance and contact resistance. The length-related resistance increases with the applied extensile force, whereas the contact resistance decreases with the contact force. The resistance of conductive knitted fabrics could be modeled by the superposition of the length-related resistance and contact resistance. Three experiments were conducted to investigate the resistance of conductive yarns: two overlapped conduct yarns and conductive knitting stitches under unidirectional extensile forces, respectively; and the corresponding empirical equations were developed. The relationship of the resistance, tensile force, fabric length and width were established. The fitting curves with high coefficient of determinations (>0.94) and low standard errors (<0.18) given by the modeling equations were achieved. Therefore, the proposed model could be used to compute the resistance of the conductive knitting fabrics under unidirectional extension.


1981 ◽  
Vol 5 ◽  
Author(s):  
Dirk J. Bartelink

ABSTRACTPoly-crystalline silicon can be regarded as a true electronic material if good p-n junctions can be made in it or if its state of depletion can be altered by reasonable gate voltages. The degree of perfection with which it must exhibit these electronic-material properties depends on whether the application is as a technology in VLSI (or other bulk-Si substrate use) where devices with bulk-crystalline properties are available or as the principal active material in Large Area Integration (LAI), such as flat-panel display addressing circuits, where the competition is much less demanding. The three main detrimental effects of grain boundaries on electronic-device function are the action of grain boundary traps as (1) extra charge centers, (2) lifetime killers, and (3) mobility-reducing scattering centers. The current trend in reducing or almost eliminating grain boundaries by laser recrystallization or lateral epitaxy has the effect of reducing the average number of traps. In terms of potential applications of the material, the improvement derived from these procedures must be balanced against other contraints placed on the overall structure. For example, the thickness and quality of the lower oxide (and interface) in these processes will determine whether an electronically active lower gate function is practical. Some currently envisioned applications include load devices in inverters either as resistors or as depletion transistors, common-gate staked CMOS structures, dual-channel MOSFET's, and other “vertical VLSI” applications. The systems-level topological advantages of stacked structures and the circuit-performance improvement provided by the ground plane in dielectrically isolated devices must also be balanced against the extra cost and yield loss of additional masking level complexity and design complication.


2007 ◽  
Vol 1004 ◽  
Author(s):  
Micha E. Spira ◽  
Dotan Kamber ◽  
Ada Dormann ◽  
Ariel Cohen ◽  
Carmen Bartic ◽  
...  

AbstractOne of the major problems in assembling efficient neuro-electronic hybrids systems is the low electrical coupling between the components. This is mainly due to the low resistance, extracellular cleft formed between the cell's plasma membrane and the substrate to which it adhere. This cleft shunts the current generated by the neuron, or the device and thus reduces the signal to noise ratio. To increase the clefts electrical resistance we fabricated gold micronails that protrude from the transistor gate surface. The micronails were functionalized by phagocytosis facilitating peptides. Cultured neurons readily engulf the functionalized micronails forming tight physical contact between the cells and the surface of the device


Author(s):  
Christopher B. Churchill ◽  
John A. Shaw

The shakedown response of conditioned shape memory alloy wires (Flexinol®) is examined experimentally during constant tension thermal cycles, at several load levels. Strain, temperature, and electrical resistivity are measured simultaneously using a specialized experimental setup that enables a relatively rapid temperature rate (1 °C/s) while preserving the temperature uniformity along the gauge length to less than 1.5 °C. Both elongation and electrical resistance are measured from the same local gauge length, allowing strain-corrected electrical resistivity to be inferred. The most repeatable behavior (least shakedown) occurs at the intermediate load of 191 MPa (consistent with the supplier’s maximum stress recommendation), with a small amount of shakedown (and some loss of two-way shape memory) at lower loads and progressively larger shakedown (strain ratcheting and reduction in hysteresis) at higher loads.


Sign in / Sign up

Export Citation Format

Share Document