scholarly journals Insight into secondary metabolites of Stachybotrys, Memnoniella, Doratomyces and Graphium between benefits and harmful

2022 ◽  
Vol 3 (1) ◽  
pp. 01-06
Author(s):  
Waill A. Elkhateeb ◽  
Ghoson M. Daba

Stachybotrys, Memnoniella, Doratomyces and Graphium all these genera belonging to Class: Sordariomycetes. This review is to demonstrate description, ecology, and secondary metabolites from Stachybotrys, Memnoniella, Doratomyces and Graphium and some of their reported biological activities. Besides, describing the importance and potentials of those fungi in order to encourage for further studies to each genus metabolites and purify already known metabolites.

2019 ◽  
Vol 5 (2) ◽  
pp. 43 ◽  
Author(s):  
Rufin Marie Kouipou Toghueo ◽  
Fabrice Fekam Boyom

Endophytic fungi have proven their usefulness for drug discovery, as suggested by the structural complexity and chemical diversity of their secondary metabolites. The diversity and biological activities of endophytic fungi from the Terminalia species have been reported. Therefore, we set out to discuss the influence of seasons, locations, and even the plant species on the diversity of endophytic fungi, as well as their biological activities and secondary metabolites isolated from potent strains. Our investigation reveals that among the 200–250 Terminalia species reported, only thirteen species have been studied so far for their endophytic fungi content. Overall, more than 47 fungi genera have been reported from the Terminalia species, and metabolites produced by some of these fungi exhibited diverse biological activities including antimicrobial, antioxidant, antimalarial, anti-inflammatory, anti-hypercholesterolemic, anticancer, and biocontrol varieties. Moreover, more than 40 compounds with eighteen newly described secondary metabolites were reported; among these, metabolites are the well-known anticancer drugs, a group that includes taxol, antioxidant compounds, isopestacin, and pestacin. This summary of data illustrates the considerable diversity and biological potential of fungal endophytes of the Terminalia species and gives insight into important findings while paving the way for future investigations.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Amit Kumar Chaudhary ◽  
Dipesh Dhakal ◽  
Jae Kyung Sohng

Microorganisms produce a range of chemical substances representing a vast diversity of fascinating molecular architectures not available in any other system. Among them,Streptomycesare frequently used to produce useful enzymes and a wide variety of secondary metabolites with potential biological activities.Streptomycesare preferred over other microorganisms for producing more than half of the clinically useful naturally originating pharmaceuticals. However, these compounds are usually produced in very low amounts (or not at all) under typical laboratory conditions. Despite the superiority ofStreptomyces, they still lack well documented genetic information and a large number of in-depth molecular biological tools for strain improvement. Previous attempts to produce high yielding strains required selection of the genetic material through classical mutagenesis for commercial production of secondary metabolites, optimizing culture conditions, and random selection. However, a profound effect on the strategy for strain development has occurred with the recent advancement of whole-genome sequencing, systems biology, and genetic engineering. In this review, we demonstrate a few of the major issues related to the potential of “-omics” technology (genomics, transcriptomics, proteomics, and metabolomics) for improving streptomycetes as an intelligent chemical factory for enhancing the production of useful bioactive compounds.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1273
Author(s):  
Yoon-Hee Jang ◽  
Sopheap Yun ◽  
Jae-Ryoung Park ◽  
Eun-Gyeong Kim ◽  
Byoung-Ju Yun ◽  
...  

Rice is exposed to various biotic stresses in the natural environment. The white-backed planthopper (Sogatella furcifera, WBPH) is a pest that causes loss of rice yield and threatens the global food supply. In most cases, pesticides are used to control WBPH. However, excessive use of pesticides increases pesticide resistance to pests and causes environmental pollution. Therefore, it is necessary to develop natural product-based pesticides to control WBPH. Plants produce a variety of secondary metabolites for protection. Secondary metabolites act as a defense against pathogens and pests and are valuable as pesticides and breeding materials. Cochlioquinone is a secondary metabolite that exhibits various biological activities, has a negative effect on the growth and development of insects, and contributes to plant defense. Here, we compared plant growth after treatment with cochlioquinone-9 (cq-9), a quinone family member. cq-9 improved the ability of plants to resist WBPH and had an effect on plant growth. Gene expression analysis revealed that cq-9 interacts with various defense-related genes to confer resistance to WBPH, suggesting that it is related to flavonoid compounds. Overall, this study provides insight into the mechanisms of WBPH resistance and suggests that cq-9 represents an environmentally friendly agent for WBPH control.


2020 ◽  
Vol 27 (11) ◽  
pp. 1836-1854 ◽  
Author(s):  
Elena Ancheeva ◽  
Georgios Daletos ◽  
Peter Proksch

Background: Endophytes represent a complex community of microorganisms colonizing asymptomatically internal tissues of higher plants. Several reports have shown that endophytes enhance the fitness of their host plants by direct production of bioactive secondary metabolites, which are involved in protecting the host against herbivores and pathogenic microbes. In addition, it is increasingly apparent that endophytes are able to biosynthesize medicinally important “phytochemicals”, originally believed to be produced only by their host plants. Objective: The present review provides an overview of secondary metabolites from endophytic fungi with pronounced biological activities covering the literature between 2010 and 2017. Special focus is given on studies aiming at exploration of the mode of action of these metabolites towards the discovery of leads from endophytic fungi. Moreover, this review critically evaluates the potential of endophytic fungi as alternative sources of bioactive “plant metabolites”. Results: Over the past few years, several promising lead structures from endophytic fungi have been described in the literature. In this review, 65 metabolites are outlined with pronounced biological activities, primarily as antimicrobial and cytotoxic agents. Some of these metabolites have shown to be highly selective or to possess novel mechanisms of action, which hold great promises as potential drug candidates. Conclusion: Endophytes represent an inexhaustible reservoir of pharmacologically important compounds. Moreover, endophytic fungi could be exploited for the sustainable production of bioactive “plant metabolites” in the future. Towards this aim, further insights into the dynamic endophyte - host plant interactions and origin of endophytic fungal genes would be of utmost importance.


2016 ◽  
Vol 5 (03) ◽  
pp. 4927 ◽  
Author(s):  
Shubhi Srivastava ◽  
Paul A. K.

Plant associated microorganisms that colonize the upper and internal tissues of roots, stems, leaves and flowers of healthy plants without causing any visible harmful or negative effect on their host. Diversity of microbes have been extensively studied in a wide variety of vascular plants and shown to promote plant establishment, growth and development and impart resistance against pathogenic infections. Ferns and their associated microbes have also attracted the attention of the scientific communities as sources of novel bioactive secondary metabolites. The ferns and fern alleles, which are well adapted to diverse environmental conditions, produce various secondary metabolites such as flavonoids, steroids, alkaloids, phenols, triterpenoid compounds, variety of amino acids and fatty acids along with some unique metabolites as adaptive features and are traditionally used for human health and medicine. In this review attention has been focused to prepare a comprehensive account of ethnomedicinal properties of some common ferns and fern alleles. Association of bacteria and fungi in the rhizosphere, phyllosphere and endosphere of these medicinally important ferns and their interaction with the host plant has been emphasized keeping in view their possible biotechnological potentials and applications. The processes of host-microbe interaction leading to establishment and colonization of endophytes are less-well characterized in comparison to rhizospheric and phyllospheric microflora. However, the endophytes are possessing same characteristics as rhizospheric and phyllospheric to stimulate the in vivo synthesis as well as in vitro production of secondary metabolites with a wide range of biological activities such as plant growth promotion by production of phytohormones, siderophores, fixation of nitrogen, and phosphate solubilization. Synthesis of pharmaceutically important products such as anticancer compounds, antioxidants, antimicrobials, antiviral substances and hydrolytic enzymes could be some of the promising areas of research and commercial exploitation.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 335
Author(s):  
Xia Yan ◽  
Jing Liu ◽  
Xue Leng ◽  
Han Ouyang

Sinularia is one of the conspicuous soft coral species widely distributed in the world’s oceans at a depth of about 12 m. Secondary metabolites from the genus Sinularia show great chemical diversity. More than 700 secondary metabolites have been reported to date, including terpenoids, norterpenoids, steroids/steroidal glycosides, and other types. They showed a broad range of potent biological activities. There were detailed reviews on the terpenoids from Sinularia in 2013, and now, it still plays a vital role in the innovation of lead compounds for drug development. The structures, names, and pharmacological activities of compounds isolated from the genus Sinularia from 2013 to March 2021 are summarized in this review.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1059 ◽  
Author(s):  
Khadija El Hazzam ◽  
Jawhar Hafsa ◽  
Mansour Sobeh ◽  
Manal Mhada ◽  
Moha Taourirte ◽  
...  

Saponins are an important group found in Chenopodium quinoa. They represent an obstacle for the use of quinoa as food for humans and animal feeds because of their bitter taste and toxic effects, which necessitates their elimination. Several saponins elimination methods have been examined to leach the saponins from the quinoa seeds; the wet technique remains the most used at both laboratory and industrial levels. Dry methods (heat treatment, extrusion, roasting, or mechanical abrasion) and genetic methods have also been evaluated. The extraction of quinoa saponins can be carried out by several methods; conventional technologies such as maceration and Soxhlet are the most utilized methods. However, recent research has focused on technologies to improve the efficiency of extraction. At least 40 saponin structures from quinoa have been isolated in the past 30 years, the derived molecular entities essentially being phytolaccagenic, oleanolic and serjanic acids, hederagenin, 3β,23,30 trihydroxy olean-12-en-28-oic acid, 3β-hydroxy-27-oxo-olean-12en-28-oic acid, and 3β,23,30 trihydroxy olean-12-en-28-oic acid. These metabolites exhibit a wide range of biological activities, such as molluscicidal, antifungal, anti-inflammatory, hemolytic, and cytotoxic properties.


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 210 ◽  
Author(s):  
Zbigniew Adamski ◽  
Linda L. Blythe ◽  
Luigi Milella ◽  
Sabino A. Bufo

Plants produce many secondary metabolites, which reveal biological activity [...]


2019 ◽  
Vol 31 ◽  
pp. 155-160
Author(s):  
Eleftheria Michalakea ◽  
Konstantia Graikou ◽  
Nektarios Aligiannis ◽  
George Panoutsopoulos ◽  
Eleftherios Kalpoutzakis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document