Tensile Strength Evolution and Damage Mechanisms of Al-Si Piston Alloy at Different Temperatures

2017 ◽  
Vol 20 (2) ◽  
pp. 1700610 ◽  
Author(s):  
Meng Wang ◽  
Jianchao Pang ◽  
Yu Qiu ◽  
Haiquan Liu ◽  
Shouxin Li ◽  
...  
2012 ◽  
Vol 159 ◽  
pp. 346-350
Author(s):  
Shu Min Liu ◽  
Jian Bin Zhang

The elevated temperature short-time tensile test with the sample of casting low nickel stainless steel was conducted on SHIMADZU AG-10 at ten temperatures 300, 500, 600, 700, 800, 950, 1000, 1050, 1100, and 1250°C, respectively. The stress-strain curves with the thermal deformation at the different temperatures, the peak stress intensity-temperature curve, and the reduction percentage of cross sectional area-temperature curve were obtained. Metallographic test samples were prepared and the morphology of deforming zone was observed by optical microscopy. The experimental results show that the tensile strength of the test samples decreases with increasing temperature. From 300 to 800°C, the work harding occurred and the tensile strength increases with increasing strain. The work softening occurred and the tensile strength decreases with increasing strain at temperatures of 800 to 1250°C. The minimum value of reduction percentage was measured at 800 °C. The austenite and delta-ferrite are the main phase in the tested samples. When the tensile temperatures are increased to 1200°C, the delta-ferrite became thinner and broke down to be spheroidized.


2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


2021 ◽  
Vol 1016 ◽  
pp. 292-296
Author(s):  
Yuliya Igorevna Borisova ◽  
Diana Yuzbekova ◽  
Anna Mogucheva

An Al-4.57Mg-0.35Mn-0.2Sc-0.09Zr (wt. %) alloy was studied in the fine-grained state obtaining after equal channel angular pressing. The mechanical behavior of alloy at the temperatures 173 K, 298 K and 348 K and at strain rate 1×10–3 s–1 is studied. Increase of the temperature testing from 173 K to 348 K decreases the yield stress by 80 MPa, the ultimate tensile strength by 60 MPa while elongation-to failure increases by a factor of 1.4. It was found that at temperatures of 298 and 173 K, the studied alloy mainly demonstrates the mode of ductile fracture, and at a temperature of 348 K the mechanism can be described as mixed ductile-brittle fracture. It was also established that of the studied alloy is the temperature dependence of the size of the dimples on the fracture surface. The formation of smaller dimples in the samples deformed at 298 K was observed.


2008 ◽  
Vol 584-586 ◽  
pp. 960-965 ◽  
Author(s):  
Tamara Kravchenko ◽  
Alexander Korshunov ◽  
Natalia Zhdanova ◽  
Lev Polyakov ◽  
Irina Kaganova

Annealed oxygen-free and tough-pitch copper samples have been processed by equalchannel angular pressing (ECAP) by route BC. The samples included 8 x 8 mm section pieces and a 40 mm diameter bar. Thermal stability was assessed based on the changes in the standard mechanical properties (conventional yield strength, tensile strength, elongation, proportional elongation and contraction) after annealing at different temperatures for 1 hour. Thermal stability of the same grade of material has been found to be different for different batches and to depend on the structural conditions of deformed material. The zone of thermal stability for copper of the two grades of interest does not depend on the material’s chemical composition.


2019 ◽  
Vol 950 ◽  
pp. 65-69
Author(s):  
Sun Fei ◽  
Xu Cheng

In order to study the effect of temperature on the mechanical properties of H90 copper strip material, the H90 copper strip test pieces were heated to different temperatures (20~600 °C) for tensile test; the yield strength, tensile strength, elastic modulus and elongation of H90 copper strip at different temperatures were obtained. Based on the test results, the empirical models of yield strength, tensile strength, elastic modulus of H90 copper strip at high temperature were established; the test showed that, with the increase of temperature, the yield strength, tensile strength and elastic modulus of H90 copper strip decreased greatly, and the elongation after fracture first increased-decreased-increased at 20~600 °C. The study results in this paper provide basic material data for analyzing the effect of temperature on the continuous firing of firearms and other weapons.


2013 ◽  
Vol 829 ◽  
pp. 583-588 ◽  
Author(s):  
Ali Dalirbod ◽  
Yahya A. Sorkhe ◽  
Hossein Aghajani

Alumina dispersion hardened copper-base composite was fabricated by internal oxidation method. The high temperature tensile fracture of Cu-Al2O3 composite was studied and tensile strengths were determined at different temperatures of 600, 680 and 780 °C. Microstructure was investigated by means of optical microscope and field emission scanning electron microscope (FESEM) with energy dispersive spectroscopy (EDS). Results show that, ultimate tensile strength and yield strength of copper alumina nanocomposite decrease slowly with increasing temperature. The yield strength reaches 119 MPa and ultimate tensile strength reaches 132 MPa at 780 °C. Surface fractography shows a dimple-type fracture on the fracture surface of the tensile tests where dimple size increases with increasing testing temperature and in some regions brittle fracture characteristics could be observed in the fracture surface.


2012 ◽  
Vol 22 (5) ◽  
pp. 445-451 ◽  
Author(s):  
Guohua Zhang ◽  
Bingchao Li ◽  
Jianxin Zhang ◽  
Zengjian Feng ◽  
Zuoshan Wei ◽  
...  

1991 ◽  
Vol 13 (2-3) ◽  
pp. 101-122 ◽  
Author(s):  
J. R. Hirsch ◽  
P. T. Wang

Semicrystalline polypropylene samples with high concentrations of crystallinity (≳62%) are deformed in uniaxial compression at different temperatures and different strain rates. The orientation changes of the crystalline part of the material are analyzed using X-ray diffraction methods. Pole figure evaluation is used to obtain information about the crystal structure, the geometry of slip, and its correlation with the characteristic of strength evolution in polymers. The contribution of the crystalline part of the material to plastic flow is estimated and the textures are related to the characteristic effects in plastic and visco-elastic response of the material during deformation and subsequent stress relaxation. The observed texture effects can be explained by the rotation of crystallographic c-axis (backbone axis) normal to the compression direction at high temperatures in a planar slip mode. The stress/strain and relaxation behavior of the material is interpreted as a combination of viscoelastic flow of amorphous volume and irreversible plastic flow of the crystalline part which contributes to an orientation dependence of deformation and stress relaxation.


2021 ◽  
Vol 11 (22) ◽  
pp. 10598
Author(s):  
Giulia Stornelli ◽  
Andrea Di Schino ◽  
Silvia Mancini ◽  
Roberto Montanari ◽  
Claudio Testani ◽  
...  

EUROFER97 steel plates for nuclear fusion applications are usually manufactured by hot rolling and subsequent heat treatments: (1) austenitization at 980 °C for 30 min, (2) rapid cooling and (3) tempering at 760 °C for 90 min. An extended experimental campaign was carried out with the scope of improving the strength of the steel without a loss of ductility. Forty groups of samples were prepared by combining cold rolling with five cold reduction ratios (20, 40, 50, 60 and 80%) and heat treatments at eight different temperatures in the range 400–750 °C (steps of 50 °C). This work reports preliminary results regarding the microstructure and mechanical properties of all the cold-rolled samples and the effects of heat treatments on the samples deformed with the greater CR ratio (80%). The strength of deformed samples decreased as heat treatment temperature increased and the change was more pronounced in the samples cold-rolled with greater CR ratios. After heat treatments at temperature up to 600 °C yield stress (YS) and ultimate tensile strength (UTS) of samples deformed with CR ratio of 80% were significantly larger than those of standard EUROFER97 but ductility was lower. On the contrary, the treatment at 650 °C produced a fully recrystallized structure with sub-micrometric grains which guarantees higher strength and comparable ductility. The work demonstrated that EUROFER97 steel can be strengthened without compromising its ductility; the most effective process parameters will be identified by completing the analyses on all the prepared samples.


Sign in / Sign up

Export Citation Format

Share Document