Rare‐Earth Metal Ions Doped Graphene Quantum Dots for Near‐IR In Vitro/In Vivo/Ex Vivo Imaging Applications

2020 ◽  
Vol 8 (21) ◽  
pp. 2000897 ◽  
Author(s):  
Md. Tanvir Hasan ◽  
Roberto Gonzalez‐Rodriguez ◽  
Ching‐Wei Lin ◽  
Elizabeth Campbell ◽  
Satvik Vasireddy ◽  
...  
2D Materials ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 035013
Author(s):  
Md Tanvir Hasan ◽  
Bong Han Lee ◽  
Ching-Wei Lin ◽  
Ainsley McDonald-Boyer ◽  
Roberto Gonzalez-Rodriguez ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 140
Author(s):  
Madison Frieler ◽  
Christine Pho ◽  
Bong Han Lee ◽  
Hana Dobrovolny ◽  
Giridhar R. Akkaraju ◽  
...  

With 18 million new cases diagnosed each year worldwide, cancer strongly impacts both science and society. Current models of cancer cell growth and therapeutic efficacy in vitro are time-dependent and often do not consider the Emax value (the maximum reduction in the growth rate), leading to inconsistencies in the obtained IC50 (concentration of the drug at half maximum effect). In this work, we introduce a new dual experimental/modeling approach to model HeLa and MCF-7 cancer cell growth and assess the efficacy of doxorubicin chemotherapeutics, whether alone or delivered by novel nitrogen-doped graphene quantum dots (N-GQDs). These biocompatible/biodegradable nanoparticles were used for the first time in this work for the delivery and fluorescence tracking of doxorubicin, ultimately decreasing its IC50 by over 1.5 and allowing for the use of up to 10 times lower doses of the drug to achieve the same therapeutic effect. Based on the experimental in vitro studies with nanomaterial-delivered chemotherapy, we also developed a method of cancer cell growth modeling that (1) includes an Emax value, which is often not characterized, and (2), most importantly, is measurement time-independent. This will allow for the more consistent assessment of the efficiency of anti-cancer drugs and nanomaterial-delivered formulations, as well as efficacy improvements of nanomaterial delivery.


2020 ◽  
Vol MA2020-01 (6) ◽  
pp. 648-648
Author(s):  
Anton V Naumov ◽  
Md Tanvir Hasan ◽  
Elizabeth Campbell ◽  
Ching-Wei Lin ◽  
Angela M. Belcher

2019 ◽  
Vol 25 (2) ◽  
pp. 127-136
Author(s):  
Juliana Maynard ◽  
Philippa Hart

Lack of efficacy and poor safety outcomes are deemed to be the greatest causes of clinical failure of novel therapeutics. The use of biomarkers that give accurate information on target engagement, providing confidence that pharmacological activity in the target organ is being achieved, is key in optimizing clinical success. Without a measurement of target engagement, it can be very difficult to discern the basis for any lack of efficacy of a drug molecule within the pharmaceutical industry. Target engagement can be measured in both an in vitro and in vivo setting, and in recent years imaging measurements have been used frequently in drug discovery and development to assess target engagement and receptor occupancy in both human and animal models. From this perspective, we assess and look at the advancements in both in vivo and ex vivo imaging to demonstrate the enormous potential that imaging has as an application to provide a greater understanding of target engagement with a correlative therapeutic impact.


2020 ◽  
Vol 3 (9) ◽  
pp. 5948-5956
Author(s):  
Pei-Ying Lo ◽  
Guang-Yu Lee ◽  
Jia-Huei Zheng ◽  
Jen-Hsien Huang ◽  
Er-Chieh Cho ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2191 ◽  
Author(s):  
Yu Wang ◽  
Nan Xu ◽  
Yongkai He ◽  
Jingyun Wang ◽  
Dan Wang ◽  
...  

Fluorescence imaging offers a new approach to visualize real-time details on a cellular level in vitro and in vivo without radioactive damage. Poor light stability of organic fluorescent dyes makes long-term imaging difficult. Due to their outstanding optical properties and unique structural features, graphene quantum dots (GQDs) are promising in the field of imaging for real-time tracking in vivo. At present, GQDs are mainly loaded on the surface of nanoparticles. In this study, we developed an efficient and convenient one-pot method to load GQDs into nanoparticles, leading to longer metabolic processes in blood and increased delivery of GQDs to tumors. Optical-magneto ferroferric oxide@polypyrrole (Fe3O4@PPy) core-shell nanoparticles were chosen for their potential use in cancer therapy. The in vivo results demonstrated that by loading GQDs, it was possible to monitor the distribution and metabolism of nanoparticles. This study provided new insights into the application of GQDs in long-term in vivo real-time tracking.


The Analyst ◽  
2016 ◽  
Vol 141 (3) ◽  
pp. 1052-1059 ◽  
Author(s):  
Siwei Yang ◽  
Jing Sun ◽  
Chong Zhu ◽  
Peng He ◽  
Zheng Peng ◽  
...  

The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity.


2013 ◽  
Vol 1 (31) ◽  
pp. 4676 ◽  
Author(s):  
Xu Wu ◽  
Fei Tian ◽  
Wenxue Wang ◽  
Jiao Chen ◽  
Min Wu ◽  
...  

2020 ◽  
Author(s):  
Fabian C. Herbert ◽  
Olivia Brohlin ◽  
Tyler Galbraith ◽  
Candace Benjamin ◽  
Cesar A. Reyes ◽  
...  

<div> <div> <div> <p>Icosahedral virus-like particles (VLPs) derived from bacteriophages Qβ and PP7 encapsulating small-ultra red fluorescent protein (smURFP) were produced using a versatile supramolecualr capsid dissassemble-reassemble approach. The generated fluorescent VLPs display identical structural properties to their non-fluorescent analogs. Encapsulated smURFP shows indistinguishable photochemical properties to its unencapsulated counterpart, exhibits outstanding stability towards pH, and produces bright in vitro images following phagocytosis by macrophages. In vivo imaging allows biodistribution to be imaged at different time points. Ex vivo imaging of intravenously administered encapsulated smURFP reveleas localization in the liver and </p> </div> </div> <div> <div> <p>kidneys after 2 h blood circulation and substantial elimination constructs as non-invasive in vivo imaging agents. </p> </div> </div> </div>


2020 ◽  
Vol 5 (3) ◽  
pp. 573-579 ◽  
Author(s):  
Hui Wang ◽  
Richard Revia ◽  
Qingxin Mu ◽  
Guanyou Lin ◽  
Charles Yen ◽  
...  

A metal-free, single-layer, boron-doped graphene quantum dot was developed that exhibits significantly higher positive contrast enhancement than a clinically used contrast agent and a non-toxic profile in mice.


Sign in / Sign up

Export Citation Format

Share Document