Biosynthesis of gold nanoparticles using Allium noeanum Reut. ex Regel leaves aqueous extract; characterization and analysis of their cytotoxicity, antioxidant, and antibacterial properties

2019 ◽  
Vol 33 (11) ◽  
Author(s):  
Marjan Shahriari ◽  
Saba Hemmati ◽  
Akram Zangeneh ◽  
Mohammad Mahdi Zangeneh
2021 ◽  
Vol 1 (2) ◽  
pp. 78-88
Author(s):  
Adewale Fadaka ◽  
Olukemi Aluko ◽  
Saartjie Awawu ◽  
Karim Theledi

Green synthesis of gold nanoparticles (AuNPs) is of particular interest due to their catalytic, antioxidant, and antibacterial properties. In this study, the aqueous extract of Pimenta dioica leaves was used to synthesize AuNPs and the effective parameters were investigated. The prepared AuNPs were characterized by various techniques including UV–Vis absorption spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), and X-ray diffractometer (XRD). The reduction and stabilization effect of the plant extract to fabricate AuNPs were explained by FTIR analysis. TEM imaging confirmed the formation of spherical-shaped AuNPs. The catalytic activity of synthesized nanoparticles was evaluated in the degradation of a Methylene Blue dye in the presence of NaBH4 as reducing agent and achieved after only two minutes. The AuNPs provided high antioxidant ability. In addition, the synthesized AuNPs showed a significant inhibitory effect against both gram-positive and gram-negative bacteria, where the zone of inhibition of 4 and 9 mm were obtained for synthesized AuNPs against S. aureus and E. coli, respectively.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3854
Author(s):  
Joanna Czechowska ◽  
Ewelina Cichoń ◽  
Anna Belcarz ◽  
Anna Ślósarczyk ◽  
Aneta Zima

Bioactive, chemically bonded bone substitutes with antibacterial properties are highly recommended for medical applications. In this study, biomicroconcretes, composed of silicon modified (Si-αTCP) or non-modified α-tricalcium phosphate (αTCP), as well as hybrid hydroxyapatite/chitosan granules non-modified and modified with gold nanoparticles (AuNPs), were designed. The developed biomicroconcretes were supposed to combine the dual functions of antibacterial activity and bone defect repair. The chemical and phase composition, microstructure, setting times, mechanical strength, and in vitro bioactive potential of the composites were examined. Furthermore, on the basis of the American Association of Textile Chemists and Colorists test (AATCC 100), adapted for chemically bonded materials, the antibacterial activity of the biomicroconcretes against S. epidermidis, E. coli, and S. aureus was evaluated. All biomicroconcretes were surgically handy and revealed good adhesion between the hybrid granules and calcium phosphate-based matrix. Furthermore, they possessed acceptable setting times and mechanical properties. It has been stated that materials containing AuNPs set faster and possess a slightly higher compressive strength (3.4 ± 0.7 MPa). The modification of αTCP with silicon led to a favorable decrease of the final setting time to 10 min. Furthermore, it has been shown that materials modified with AuNPs and silicon possessed an enhanced bioactivity. The antibacterial properties of all of the developed biomicroconcretes against the tested bacterial strains due to the presence of both chitosan and Au were confirmed. The material modified simultaneously with AuNPs and silicon seems to be the most promising candidate for further biological studies.


2021 ◽  
Author(s):  
E.K. Soltani ◽  
K. Zaim ◽  
K. Mokhnache ◽  
N. Haichour ◽  
S. Mezaache-Aichour ◽  
...  

The propolis, an extremely complex resinous material, exhibits valuable pharmacological and biological properties, mainly attributed to the presence of polyphenols. The composition of propolis depends on time, vegetation, and the area of collection. Total flavonoid and polyphenol contents of aqueous extracts of propolis samples from different areas of Algeria, determined by using aluminum chloride and Folin–Ciocalteu colorimetric methods, were in the range of 3.047 ± 0.004–5.273 ± 0.013 mg/g and 96.833 ± 0.027–458.833 ± 0.0005 mg/g crude extract of propolis, respectively. This study examined the antioxidant and antimicrobial activities of propolis. Aqueous extracts of propolis were obtained in order to evaluate their antioxidant activities by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, β-carotene and electrochemical assays. All tested propolis samples had relatively strong antioxidant activities, which were also correlated with the total polyphenol and flavonoid content present. The percentage of inhibition of lipid peroxidation of linoleic acid emulsion during 24 h varied between 86.04 ± 0.42 and 90.60 ± 3.77% among the tested samples. The highest DPPH radical scavenging activity was observed by ABAL (Ain Abassa Aqueous Extract) with IC50 = 8.49 ± 5.07 10−5 μg/ml, and the lowest was observed by SAL (Setif Aqueous Extract) with IC50 of 21.16 ± 0.0001 μg/ml. The most important antibacterial activity was obtained with Ain Abassa extract; the zones of inhibition obtained for this excerpt vary from 15.22 to 15.5 mm. Followed by the Setif extract with areas of 12.33 to 12.75 mm, the Tizi-Ouzou extract with areas of 10.11 to 11.11 mm. This study will bring an innovation for further studies with regard to the antioxidant and antibacterial properties of the aqueous extracts of propolis. This study corroborates that Algerian propolis is a rich source of natural antioxidants, properties which could be used in the prevention of different diseases, both in humans and in animals.


2020 ◽  
Vol 2 (1) ◽  
pp. 29

Based on the global environmental pollution problems, the main focus of every nano-research is to produce the nanomaterial in a green and eco-friendly way without any interference of chemical synthesis. By the way, the present study was intended to use an aqueous extract of the living fossil plant viz., Ginkgo biloba L., to synthesize the gold nanoparticles and evaluate their antibiotic activity against bacterial pathogens. The gold nanoparticles (AuNps) were successfully synthesized by mixing the Ginkgo biloba aqueous extract and the auric chloride solution for approximately 24 hours. The UV-Vis spectra of Gold nanoparticles (AuNps) showed the maximum absorption peak at 520nm. The SEM analysis also showed the gold nanoparticles synthesized from Ginkgo biloba were spherical with particle size ranging from 40 to 60nm. During our study, the gold nanoparticles exhibited significant antimicrobial activity against bacterial pathogens, i.e., E. coli and Bacillus subtilis. The later bacterium was found to be more susceptible to the nanoparticles as well as the extracts of G. biloba in comparison to the former bacterium.


Author(s):  
SAUD BAWAZEER

Objective: The main objective of the current research work was synthesized of gold nanoparticles (AuNPs) of Thevetia peruviana aqueous extract,characterization, and screening for urease enzyme inhibitory activity.Methods: AuNPs were synthesized by mixing 1 mM gold salt solution with T. peruviana aqueous extract without any reducing agents. The preparedAuNPs were characterized using UV–visible spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy techniques. Thesynthesized AuNPs were assessed for in vitro urease enzyme inhibitory activity at 0.2 μg in comparison with the aqueous extract.Results: In this finding, we synthesized the AuNPs of T. peruviana aqueous extract for the 1st time. The AuNPs exhibited significant stability atroom temperature. The AuNPs showed significant urease inhibitory activity with IC50 67.56±1.67 at 0.2 μg as compared to aqueous extract whichexhibited good activity with IC50 39.21±1.32 μ at 0.2 mg, against standard thiourea (IC50=21.00±1.16). The formation of AuNPs correlates due to activephytochemical present in extract which is responsible for synthesizing NPs.Conclusion: T. peruviana extract and prepared AuNPs are an outstanding urease enzyme inhibitor and are capable of making fine NPs. Application:The synthesized AuNPs of T. peruviana aqueous extract which significant urease inhibitory activity may allow us to discover NPs for potentiallyeffective and safe nanoherbal therapy.


2018 ◽  
Vol 10 (5) ◽  
pp. 153 ◽  
Author(s):  
Balashanmugam P. ◽  
Mosa Christas K. ◽  
Kowsalya E.

Objective: The biogenic gold nanoparticles are considered to be extremely impressive for its wide range of applications in pharmaceutics and therapeutics. The present study was aimed at the biogenic synthesis of gold nanoparticles (AuNPs) from Marsilea quadrifolia aqueous extract and to investigate its antioxidant property and cytotoxic effect on human ovarian teratocarcinoma (PA-1) and lung adenocarcinoma (A549) cell lines.Methods: The biogenic AuNPs was synthesized using an aqueous extract of Marsilea quadrifolia. The synthesized biogenic AuNPs were characterized by ultraviolet (UV) visible spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD). The biogenic AuNPs was assessed for its stability over a period of time and antioxidant activity. The cytotoxicity of biogenic AuNPs against PA-1 and A549 cell lines was studied using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.Results: The synthesized biogenic AuNPs showed peculiar ruby red color and a surface plasmon resonance (SPR) peak at 544 nm in the UV-Vis spectrum. The characterization of biogenic AuNPs by TEM, EDX and XRD revealed well dispersed spherical particles ranging from 10-40 nm and the presence of elemental gold and its crystalline nature, respectively. The AuNPs showed good stability and the scavenging activity at 50 μg/ml. The in vitro cytotoxicity of biogenic AuNPs against PA-1 and A549 cell lines recorded half maximal inhibitory concentration (IC50) of 45.88 μg/ml and 52.015 μg/ml, respectively.Conclusion: The biogenic AuNPs demonstrated superior antioxidant and antiproliferative activities against cancer cell lines.


2018 ◽  
Vol 34 (1) ◽  
pp. 401-409 ◽  
Author(s):  
Abdul Wahid Wahab ◽  
Abdul Karim ◽  
Asmawati Asmawati ◽  
I. Wayan Sutapa

Sign in / Sign up

Export Citation Format

Share Document