Neuroglobin expression and function in the temporal cortex of bilirubin encephalopathy rats

2021 ◽  
Author(s):  
Jia‐Heng Hu ◽  
Ping Fan ◽  
Li‐Rong Zhang ◽  
Chun‐Yan Chen ◽  
Jin Xu ◽  
...  

2018 ◽  
Vol 4 (1) ◽  
pp. 381-402 ◽  
Author(s):  
Bevil R. Conway

Inferior temporal cortex (IT) is a key part of the ventral visual pathway implicated in object, face, and scene perception. But how does IT work? Here, I describe an organizational scheme that marries form and function and provides a framework for future research. The scheme consists of a series of stages arranged along the posterior-anterior axis of IT, defined by anatomical connections and functional responses. Each stage comprises a complement of subregions that have a systematic spatial relationship. The organization of each stage is governed by an eccentricity template, and corresponding eccentricity representations across stages are interconnected. Foveal representations take on a role in high-acuity object vision (including face recognition); intermediate representations compute other aspects of object vision such as behavioral valence (using color and surface cues); and peripheral representations encode information about scenes. This multistage, parallel-processing model invokes an innately determined organization refined by visual experience that is consistent with principles of cortical development. The model is also consistent with principles of evolution, which suggest that visual cortex expanded through replication of retinotopic areas. Finally, the model predicts that the most extensively studied network within IT—the face patches—is not unique but rather one manifestation of a canonical set of operations that reveal general principles of how IT works.



2019 ◽  
Author(s):  
Alexander J. Billig ◽  
Björn Herrmann ◽  
Ariane E. Rhone ◽  
Phillip E. Gander ◽  
Kirill V. Nourski ◽  
...  

AbstractThe functional organization of human auditory cortex can be probed by characterizing responses to various classes of sound at different anatomical locations. Along with histological studies this approach has revealed a primary field in posteromedial Heschl’s gyrus (HG) with pronounced induced high-frequency (70-150 Hz) activity and short-latency responses that phase-lock to rapid transient sounds. Low-frequency neural oscillations are also relevant to stimulus processing and information flow, however their distribution within auditory cortex has not been established. Alpha activity (7-14 Hz) in particular has been associated with processes that may differentially engage earlier versus later levels of the cortical hierarchy, including functional inhibition and the communication of sensory predictions. These theories derive largely from the study of occipitoparietal sources readily detectable in scalp electroencephalography. To characterize the anatomical basis and functional significance of less accessible temporal-lobe alpha activity we analyzed responses to sentences in seven human adults (four female) with epilepsy who had been implanted with electrodes in superior temporal cortex. In contrast to primary cortex in posteromedial HG, a non-primary field in anterolateral HG was characterized by high spontaneous alpha activity that was strongly suppressed during auditory stimulation. Alpha-power suppression decreased with distance from anterolateral HG throughout superior temporal cortex, and was more pronounced for clear compared to degraded speech. This suppression could not be accounted for solely by a change in the slope of the power spectrum. The differential manifestation and stimulus-sensitivity of alpha oscillations across auditory fields should be accounted for in theories of their generation and function.Significance StatementTo understand how auditory cortex is organized in support of perception, we recorded from patients implanted with electrodes for clinical reasons. This allowed measurement of activity in brain regions at different levels of sensory processing. Oscillations in the alpha range (7-14 Hz) have been associated with functions including sensory prediction and inhibition of regions handling irrelevant information, but their distribution within auditory cortex is not known. A key finding was that these oscillations dominated in one particular non-primary field, anterolateral Heschl’s gyrus, and were suppressed when subjects listened to sentences. These results build on our knowledge of the functional organization of auditory cortex and provide anatomical constraints on theories of the generation and function of alpha oscillations.



2018 ◽  
Vol 74 (7) ◽  
pp. 1132-1141 ◽  
Author(s):  
Ilana J Bennett ◽  
Shauna M Stark ◽  
Craig E L Stark

Abstract Objectives The current study examined recognition memory dysfunction and its neuroanatomical substrates in cognitively normal older adults and those diagnosed with mild cognitive impairment (MCI). Methods Participants completed the Mnemonic Similarity Task, which provides simultaneous measures of recognition memory and mnemonic discrimination. They also underwent structural neuroimaging to assess volume of medial temporal cortex and hippocampal subfields. Results As expected, individuals diagnosed with MCI had significantly worse recognition memory performance and reduced volume across medial temporal cortex and hippocampal subfields relative to cognitively normal older adults. After controlling for diagnostic group differences, however, recognition memory was significantly related to whole hippocampus volume, and to volume of the dentate gyrus/CA3 subfield in particular. Recognition memory was also related to mnemonic discrimination, a fundamental component of episodic memory that has previously been linked to dentate gyrus/CA3 structure and function. Discussion Results reveal that hippocampal subfield volume is sensitive to individual differences in recognition memory in older adults independent of clinical diagnosis. This supports the notion that episodic memory declines along a continuum within this age group, not just between diagnostic groups.



2021 ◽  
Author(s):  
DB Heyer ◽  
R Wilbers ◽  
AA Galakhova ◽  
E Hartsema ◽  
S Braak ◽  
...  

AbstractThe expansion of supragranular cortical layers is thought to have enabled evolutionary development of human cognition and language. However, whether increased volume of supragranular cortical layers can actually support greater cognitive and language abilities in humans has not been demonstrated. Here, we find that subjects with higher general and verbal intelligence test (VIQ) scores have selectively expanded layers 2 and 3 only in the left temporal cortex, an area associated with language and IQ-test performance. This expansion is accompanied by lower neuron densities and larger cell-body size. Furthermore, individuals with higher VIQ scores had neurons with larger dendritic trees in left temporal cortex, potentially impacting their function. Indeed, neurons of subjects with higher VIQ scores had faster action potential upstroke kinetics, which improves information processing. These data show that expansion of supragranular layer volume, cortical and cellular micro-architecture and function are associated with improved verbal mental ability in human subjects.



2020 ◽  
Vol 10 (4) ◽  
pp. 585-593
Author(s):  
Qi Li ◽  
Jing Deng ◽  
Juan Yang ◽  
Tao Xu ◽  
Xinyuan Yu ◽  
...  

SRY-related HMG box (SOX)21, one of the most highly expressed transcription inhibitors in the central nervous system (CNS), is involved in neurogenesis-related transcription and proliferation, which are associated with certain neurological disorders. However, it is the role of SOX21 in the pathogenesis of epilepsy remains unclear. In this study, our aim was to examine the expression and function of SOX21 in patients with temporal lobe epilepsy (TLE), as well as pentylenetetrazol (PTZ)-kindled rats, and to identify the possible roles of SOX21 in epileptogenesis. We found that SOX21 localized in neurons is upregulated, especially in TLE patients. SOX21 is present in the hippocampus or adjacent temporal cortex in the PTZ-kindled epileptic rat model. In addition, the P-gpMAbNano-structured material (PNM) nanoparticles carrying anti-epileptic drugs (AEDs) were injected into the epileptic model rats using an intravenous injection. The expression of tumor necrosis factor peptide in the rats was detected to verify whether the drug-carrying nanoparticles could bypass macrophages and reach the target for treatment. We also found an interaction between SOX21 and SOX2 in PTZ-kindled rats. These results indicate that SOX21 is mainly located in neurons and may regulate the pathogenesis of epilepsy, possibly in association with SOX2. Moreover, PNM nanoparticles equipped with AEDs can reach the target through macrophages in vivo, providing a new approach for the clinical treatment of epilepsy.



2009 ◽  
Vol 40 (5) ◽  
pp. 761-770 ◽  
Author(s):  
J. Hall ◽  
H. C. Whalley ◽  
K. Marwick ◽  
J. McKirdy ◽  
J. Sussmann ◽  
...  

BackgroundThe hippocampus plays a central role in memory formation. There is considerable evidence of abnormalities in hippocampal structure and function in schizophrenia, which may differentiate it from bipolar disorder. However, no previous studies have compared hippocampal activation in schizophrenia and bipolar disorder directly.MethodFifteen patients with schizophrenia, 14 patients with bipolar disorder and 14 healthy comparison subjects took part in the study. Subjects performed a face–name pair memory task during functional magnetic resonance imaging (fMRI). Differences in blood oxygen level-dependent (BOLD) activity were determined during encoding and retrieval of the face–name pairs.ResultsThe patient groups showed significant differences in hippocampal and prefrontal cortex (PFC) activation during face–name pair learning. During encoding, patients with schizophrenia showed decreased anterior hippocampal activation relative to subjects with bipolar disorder, whereas patients with bipolar disorder showed decreased dorsal PFC activation relative to patients with schizophrenia. During retrieval, patients with schizophrenia showed greater activation of the dorsal PFC than patients with bipolar disorder. Patients with schizophrenia also differed from healthy control subjects in the activation of several brain regions, showing impaired superior temporal cortex activation during encoding and greater dorsal PFC activation during retrieval. These effects were evident despite matched task performance.ConclusionsPatients with schizophrenia showed deficits in hippocampal activation during a memory task relative to patients with bipolar disorder. The disorders were further distinguished by differences in PFC activation. The results demonstrate that these disorders can distinguished at a group level using non-invasive neuroimaging.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jacob A. Miller ◽  
Willa I. Voorhies ◽  
Xiang Li ◽  
Ishana Raghuram ◽  
Nicola Palomero-Gallagher ◽  
...  

Abstract Hominoid-specific brain structures are of particular importance in understanding the evolution of human brain structure and function, as they are absent in mammals that are widely studied in the extended neuroscience field. Recent research indicates that the human fusiform gyrus (FG), which is a hominoid-specific structure critical for complex object recognition, contains a tertiary, longitudinal sulcus (mid-fusiform sulcus, MFS) that bisects the FG into lateral and medial parallel gyri. The MFS is a functional and architectonic landmark in the human brain. Here, we tested if the MFS is specific to the human FG or if the MFS is also identifiable in other hominoids. Using magnetic resonance imaging and cortical surface reconstructions in 30 chimpanzees and 30 humans, we show that the MFS is also present in chimpanzees. The MFS is relatively deeper and cortically thinner in chimpanzees compared to humans. Additional histological analyses reveal that the MFS is not only present in humans and chimpanzees, but also in bonobos, gorillas, orangutans, and gibbons. Taken together, these results reveal that the MFS is a sulcal landmark that is shared between humans and other hominoids. These results require a reconsideration of the sulcal patterning in ventral temporal cortex across hominoids, as well as revise the compensation theory of cortical folding.



2021 ◽  
Vol 8 ◽  
Author(s):  
Jian Zhou ◽  
Zaijia Yang ◽  
Ruiming Shen ◽  
Wangwang Zhong ◽  
Huiduan Zheng ◽  
...  

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) has been shown to play a pivotal role in the regulation of mitochondrial biogenesis in diseases. Resveratrol (RSV), a natural polyphenolic reagent, has powerful antioxidant properties and the ability to scavenge mitochondrial reactive oxygen species (ROS) in a variety of central nervous system diseases. However, the underlying molecular mechanisms of RSV on mitochondrial biogenesis in early brain injury (EBI) following subarachnoid hemorrhage (SAH) remain poorly understood. This study aimed to explore the potential neuroprotective effects of RSV on mitochondrial biogenesis and function by activation of the PGC-1α signaling pathway in a prechiasmatic cistern SAH model. PGC-1α expression and related mitochondrial biogenesis were detected. Amounts of nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) were determined to evaluate the extent of mitochondrial biogenesis. Increased PGC-1α and mitochondrial biogenesis after SAH were observed in the temporal cortex. Resveratrol increased the expression of PGC-1α, NRF1, and TFAM, and promoted PGC-1α nuclear translocation. Moreover, RSV could scavenge excess ROS, increase the activity of superoxide dismutase (SOD), enhance the potential of mitochondrial membrane and ATP levels, reduce the number of mitochondrial DNA copy, and decrease the level of malondialdehyde (MDA). RSV significantly ameliorated the release of apoptosis-related cytokines, namely P53, cleaved caspase-3, cytochrome c, and BAX, leading to the amelioration of neuronal apoptosis, brain edema, and neurological impairment 24 h after SAH. These results indicate that resveratrol promotes mitochondrial biogenesis and function by activation of the PGC-1α signaling pathway in EBI following SAH.



Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.



Sign in / Sign up

Export Citation Format

Share Document