Application of the Alpine 3D model for glacier mass balance and glacier runoff studies at Goldbergkees, Austria

2008 ◽  
Vol 22 (19) ◽  
pp. 3941-3949 ◽  
Author(s):  
Gernot Michlmayr ◽  
Michael Lehning ◽  
Gernot Koboltschnig ◽  
Hubert Holzmann ◽  
Massimiliano Zappa ◽  
...  
2020 ◽  
Vol 14 (6) ◽  
pp. 2005-2027 ◽  
Author(s):  
Álvaro Ayala ◽  
David Farías-Barahona ◽  
Matthias Huss ◽  
Francesca Pellicciotti ◽  
James McPhee ◽  
...  

Abstract. As glaciers adjust their size in response to climate variations, long-term changes in meltwater production can be expected, affecting the local availability of water resources. We investigate glacier runoff in the period 1955–2016 in the Maipo River basin (4843 km2, 33.0–34.3∘ S, 69.8–70.5∘ W), in the semiarid Andes of Chile. The basin contains more than 800 glaciers, which cover 378 km2 in total (inventoried in 2000). We model the mass balance and runoff contribution of 26 glaciers with the physically oriented and fully distributed TOPKAPI (Topographic Kinematic Approximation and Integration)-ETH glacio-hydrological model and extrapolate the results to the entire basin. TOPKAPI-ETH is run at a daily time step using several glaciological and meteorological datasets, and its results are evaluated against streamflow records, remotely sensed snow cover, and geodetic mass balances for the periods 1955–2000 and 2000–2013. Results show that in 1955–2016 glacier mass balance had a general decreasing trend as a basin average but also had differences between the main sub-catchments. Glacier volume decreased by one-fifth (from 18.6±4.5 to 14.9±2.9 km3). Runoff from the initially glacierized areas was 177±25 mm yr−1 (16±7 % of the total contributions to the basin), but it shows a decreasing sequence of maxima, which can be linked to the interplay between a decrease in precipitation since the 1980s and the reduction of ice melt. Glaciers in the Maipo River basin will continue retreating because they are not in equilibrium with the current climate. In a hypothetical constant climate scenario, glacier volume would reduce to 81±38 % of the year 2000 volume, and glacier runoff would be 78±30 % of the 1955–2016 average. This would considerably decrease the drought mitigation capacity of the basin.


2015 ◽  
Vol 61 (227) ◽  
pp. 447-460 ◽  
Author(s):  
Gao Tanguang ◽  
Kang Shichang ◽  
Lan Cuo ◽  
Zhang Tingjun ◽  
Zhang Guoshuai ◽  
...  

AbstractRunoff estimation in high-altitude glacierized basins is an important issue on the Tibetan Plateau. To investigate glacier mass balance, runoff and water balance in the Qugaqie basin and Zhadang sub-basin in the southern Tibetan Plateau, two glacier models and three snow models were integrated into the spatially distributed hydrological model JAMS/J2K. The results showed that the temperature index method simulated glacier runoff better than the degree-day factor method. The simulated glacier melt volume in the Qugaqie basin in 2006, 2007 and 2008 contributed 58%, 50% and 41%, respectively, to its total runoff. In the Zhadang basin, the glacier melt volume contributed 78% and 66% to its runoff during 2007 and 2008, respectively. Compared with the observation results, the simulated glacier mass balance showed similar variations with slightly higher values, indicating an underestimation of glacier melt volume. The water balance simulation in the upstream areas (705–874 mm) was comparable to that in the downstream areas (1051–1502 mm) and generally lower than the observed results. In both basins, the glacier mass-balance simulation was relatively accurate in the melt season compared to the other seasons.


2019 ◽  
Author(s):  
Álvaro Ayala ◽  
David Farías-Barahona ◽  
Matthias Huss ◽  
Francesca Pellicciotti ◽  
James McPhee ◽  
...  

Abstract. As glaciers adjust their size in response to climate variations, long-term changes in meltwater production can be expected, affecting the local availability of water resources. We investigate glacier runoff in the period 1955–2016 in the Maipo River Basin (4 843 km2), semiarid Andes of Chile. The basin contains more than 800 glaciers covering 378 km2 (inventoried in 2000). We model the mass balance and runoff contribution of 26 glaciers with the physically-oriented and fully-distributed TOPKAPI-ETH glacio-hydrological model, and extrapolate the results to the entire basin. TOPKAPI-ETH is run using several glaciological and meteorological datasets, and its results are evaluated against streamflow records, remotely-sensed snow cover and geodetic mass balances for the periods 1955–2000 and 2000–2013. Results show that glacier mass balance had a general decreasing trend as a basin average, but with differences between the main sub-catchments. Glacier volume decreased by one fifth (from 18.6 ± 4.5 to 14.9 ± 2.9 km3). Runoff from the initially glacierized areas was 186 ± 27 mm yr−1 (17 ± 7 % of the total contributions to the basin), but it shows a decreasing sequence of maxima, which can be linked to the interplay between a decrease in precipitation since the 1980s and the reduction of ice melt. If glaciers in the basin were in equilibrium with the climate of the last two decades, their volume would be reduced to 81 ± 38 % of the year 2000 volume, and glacier runoff during dry periods would be 61 ± 24 % of its maximum contribution in the period 1955–2016, considerably decreasing the drought mitigation capacity of the basin.


Climate ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 126
Author(s):  
Moon Taveirne ◽  
Laura Ekemar ◽  
Berta González Sánchez ◽  
Josefine Axelsson ◽  
Qiong Zhang

Glacier mass balance is heavily influenced by climate, with responses of individual glaciers to various climate parameters varying greatly. In northern Sweden, Rabots Glaciär’s mass balance has decreased since it started being monitored in 1982. To relate Rabots Glaciär’s mass balance to changes in climate, the sensitivity to a range of parameters is computed. Through linear regression of mass balance with temperature, precipitation, humidity, wind speed and incoming radiation the climate sensitivity is established and projections for future summer mass balance are made. Summer mass balance is primarily sensitive to temperature at −0.31 m w.e. per °C change, while winter mass balance is mainly sensitive to precipitation at 0.94 m w.e. per % change. An estimate using summer temperature sensitivity projects a dramatic decrease in summer mass balance to −3.89 m w.e. for the 2091–2100 period under climate scenario RCP8.5. With large increases in temperature anticipated for the next century, more complex modelling studies of the relationship between climate and glacier mass balance is key to understanding the future development of Rabots Glaciär.


2019 ◽  
Vol 13 (9) ◽  
pp. 2361-2383 ◽  
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Huilin Li ◽  
Feiteng Wang ◽  
Ping Zhou

Abstract. The direct glaciological method provides in situ observations of annual or seasonal surface mass balance, but can only be implemented through a succession of intensive in situ measurements of field networks of stakes and snow pits. This has contributed to glacier surface mass-balance measurements being sparse and often discontinuous in the Tien Shan. Nevertheless, long-term glacier mass-balance measurements are the basis for understanding climate–glacier interactions and projecting future water availability for glacierized catchments in the Tien Shan. Riegl VZ®-6000 long-range terrestrial laser scanner (TLS), typically using class 3B laser beams, is exceptionally well suited for repeated glacier mapping, and thus determination of annual and seasonal geodetic mass balance. This paper introduces the applied TLS for monitoring summer and annual surface elevation and geodetic mass changes of Urumqi Glacier No. 1 as well as delineating accurate glacier boundaries for 2 consecutive mass-balance years (2015–2017), and discusses the potential of such technology in glaciological applications. Three-dimensional changes of ice and firn–snow bodies and the corresponding densities were considered for the volume-to-mass conversion. The glacier showed pronounced thinning and mass loss for the four investigated periods; glacier-wide geodetic mass balance in the mass-balance year 2015–2016 was slightly more negative than in 2016–2017. Statistical comparison shows that agreement between the glaciological and geodetic mass balances can be considered satisfactory, indicating that the TLS system yields accurate results and has the potential to monitor remote and inaccessible glacier areas where no glaciological measurements are available as the vertical velocity component of the glacier is negligible. For wide applications of the TLS in glaciology, we should use stable scan positions and in-situ-measured densities of snow–firn to establish volume-to-mass conversion.


2010 ◽  
Vol 4 (1) ◽  
pp. 115-128 ◽  
Author(s):  
R. J. Thayyen ◽  
J. T. Gergan

Abstract. A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April) and south-west monsoon in summer (June–September) dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007) is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is to augment stream runoff during the years of low summer discharge. This paper intends to highlight the importance of creating credible knowledge on the Himalayan cryospheric processes to develop a more representative global view on river flow response to cryospheric changes and locally sustainable water resources management strategies.


2016 ◽  
Vol 57 (71) ◽  
pp. 289-294 ◽  
Author(s):  
Phuntsho Tshering ◽  
Koji Fujita

AbstractThis study presents the first decadal mass-balance record of a small debris-free glacier in the Bhutan Himalaya, where few in situ measurements have been reported to date. Since 2003 we have measured the mass balance of Gangju La glacier, which covers an area of 0.3km2 and extends from 4900 to 5200ma.s.l., using both differential GPS surveys (geodetic method) and stake measurements (direct method). The observed mass balance ranged from –1.12 to –2.04mw.e. a–1 between 2003 and 2014. The glacier exhibited much greater mass loss than neighbouring glaciers in the eastern Himalaya and southeastern Tibet, which are expected to be sensitive to climate change due to the monsooninfluenced humid climate. Observed mass-balance profiles suggest that the equilibrium-line altitude has been higher than Gangju La glacier since 2003, implying that the entire glacier has experienced net ablation for at least the past decade.


2016 ◽  
Vol 10 (3) ◽  
pp. 1089-1104 ◽  
Author(s):  
Kjetil S. Aas ◽  
Thorben Dunse ◽  
Emily Collier ◽  
Thomas V. Schuler ◽  
Terje K. Berntsen ◽  
...  

Abstract. In this study we simulate the climatic mass balance of Svalbard glaciers with a coupled atmosphere–glacier model with 3 km grid spacing, from September 2003 to September 2013. We find a mean specific net mass balance of −257 mm w.e. yr−1, corresponding to a mean annual mass loss of about 8.7 Gt, with large interannual variability. Our results are compared with a comprehensive set of mass balance, meteorological, and satellite measurements. Model temperature biases of 0.19 and −1.9 °C are found at two glacier automatic weather station sites. Simulated climatic mass balance is mostly within about 100 mm w.e. yr−1 of stake measurements, and simulated winter accumulation at the Austfonna ice cap shows mean absolute errors of 47 and 67 mm w.e. yr−1 when compared to radar-derived values for the selected years 2004 and 2006. Comparison of modeled surface height changes from 2003 to 2008, and satellite altimetry reveals good agreement in both mean values and regional differences. The largest deviations from observations are found for winter accumulation at Hansbreen (up to around 1000 mm w.e. yr−1), a site where sub-grid topography and wind redistribution of snow are important factors. Comparison with simulations using 9 km grid spacing reveal considerable differences on regional and local scales. In addition, 3 km grid spacing allows for a much more detailed comparison with observations than what is possible with 9 km grid spacing. Further decreasing the grid spacing to 1 km appears to be less significant, although in general precipitation amounts increase with resolution. Altogether, the model compares well with observations and offers possibilities for studying glacier climatic mass balance on Svalbard both historically as well as based on climate projections.


2013 ◽  
Vol 7 (4) ◽  
pp. 1227-1245 ◽  
Author(s):  
M. Zemp ◽  
E. Thibert ◽  
M. Huss ◽  
D. Stumm ◽  
C. Rolstad Denby ◽  
...  

Abstract. Glacier-wide mass balance has been measured for more than sixty years and is widely used as an indicator of climate change and to assess the glacier contribution to runoff and sea level rise. Until recently, comprehensive uncertainty assessments have rarely been carried out and mass balance data have often been applied using rough error estimation or without consideration of errors. In this study, we propose a framework for reanalysing glacier mass balance series that includes conceptual and statistical toolsets for assessment of random and systematic errors, as well as for validation and calibration (if necessary) of the glaciological with the geodetic balance results. We demonstrate the usefulness and limitations of the proposed scheme, drawing on an analysis that comprises over 50 recording periods for a dozen glaciers, and we make recommendations to investigators and users of glacier mass balance data. Reanalysing glacier mass balance series needs to become a standard procedure for every monitoring programme to improve data quality, including reliable uncertainty estimates.


2015 ◽  
Vol 56 (70) ◽  
pp. 79-88 ◽  
Author(s):  
Markus Engelhardt ◽  
Thomas V. Schuler ◽  
Liss M. Andreassen

AbstractThis study evaluates sensitivities of glacier mass balance and runoff to both annual and monthly perturbations in air temperature and precipitation at four highly glacierized catchments: Engabreen in northern Norway and Ålfotbreen, Nigardsbreen and Storbreen, which are aligned along a west–east profile in southern Norway. The glacier mass-balance sensitivities to changes in annual air temperature range from 1.74 m w.e. K−1 for Ålfotbreen to 0.55 m w.e. K−1 for Storbreen, the most maritime and the most continental glaciers in this study, respectively. The runoff sensitivities of all catchments are 20–25% per degree temperature change and 6–18% for a 30% precipitation change. A seasonality of the sensitivities becomes apparent. With increasing continentality, the sensitivity of mass balance and runoff to temperature perturbations during summer increases, and the sensitivity of annual runoff to both temperature and precipitation perturbations is constricted towards changes during the ablation period. Comparing sensitivities in northern and southern Norway, as well as the variability across southern Norway, reveals that continentality influences sensitivities more than latitude does.


Sign in / Sign up

Export Citation Format

Share Document