P‐188: Effect of Double‐Layered Bank Structure on Hole‐Injection Properties in Inkjet‐Printed OLED Devices

2020 ◽  
Vol 51 (1) ◽  
pp. 2079-2082
Author(s):  
Jiyoon Kim ◽  
Yool-Guk Kim ◽  
Jin-Goo Kang ◽  
Chang-Hee Lee
2020 ◽  
Vol 91 (3) ◽  
pp. 30201
Author(s):  
Hang Yu ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Yao Ni

Organic thin film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8BTBT) and copper (Cu) electrodes were fabricated. For improving the electrical performance of the original devices, the different modifications were attempted to insert in three different positions including semiconductor/electrode interface, semiconductor bulk inside and semiconductor/insulator interface. In detail, 4,4′,4′′-tris[3-methylpheny(phenyl)amino] triphenylamine (m-MTDATA) was applied between C8BTBTand Cu electrodes as hole injection layer (HIL). Moreover, the fluorinated copper phthalo-cyanine (F16CuPc) was inserted in C8BTBT/SiO2 interface to form F16CuPc/C8BTBT heterojunction or C8BTBT bulk to form C8BTBT/F16CuPc/C8BTBT sandwich configuration. Our experiment shows that, the sandwich structured OTFTs have a significant performance enhancement when appropriate thickness modification is chosen, comparing with original C8BTBT devices. Then, even the low work function metal Cu was applied, a normal p-type operate-mode C8BTBT-OTFT with mobility as high as 2.56 cm2/Vs has been fabricated.


2001 ◽  
Vol 708 ◽  
Author(s):  
Mathew K. Mathai ◽  
Keith A. Higginson ◽  
Bing R. Hsieh ◽  
Fotios Papadimitrakopoulos

ABSTRACTIn this paper we report a method for tuning the extent of hole injection into the active light emitting tris- (8-hydroxyquinoline) aluminum (Alq3) layer in organic light emitting diodes (OLEDs). This is made possible by modifying the indium tin oxide (ITO) anode with an oxidized transport layer (OTL) comprising a hole transporting polycarbonate of N,N'-bis(3-hydroxymethyl)-N,N'-bis(phenyl) benzidine and diethylene glycol (PC-TPB-DEG) doped with varying concentrations of antimonium hexafluoride salt of N,N,N',N'-tetra-p-tolyl-4,4'-biphenyldiamine (TMTPD+ SbF6-). The conductivity of the OTL can be changed over three orders of magnitude depending on salt loading. The analysis of hole and electron current variations in these devices indicates that optimizing the conductivity of the OTL enables the modulation of hole injection into the Alq3 layer. The bipolar charge transport properties for OLEDs in which the interfacial carrier injection barriers have been minimized, are governed by the conductivities of the respective layers and in this case it is shown that the variable conductivity of the OTL does allow for better control of the same. Accordingly, varying the concentration of holes in the device indicates that beyond an optimum concentration of holes, further hole injection results in the formation of light quenching cationic species and the initiation of oxidative degradation processes in the Alq3 layer, thus accelerating the intrinsic degradation of these devices. The variable conductivity of the OTL can hence be used to minimize the occurrence of these processes.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shiqiang Lu ◽  
Jinchai Li ◽  
Kai Huang ◽  
Guozhen Liu ◽  
Yinghui Zhou ◽  
...  

AbstractHere we report a comprehensive numerical study for the operating behavior and physical mechanism of nitride micro-light-emitting-diode (micro-LED) at low current density. Analysis for the polarization effect shows that micro-LED suffers a severer quantum-confined Stark effect at low current density, which poses challenges for improving efficiency and realizing stable full-color emission. Carrier transport and matching are analyzed to determine the best operating conditions and optimize the structure design of micro-LED at low current density. It is shown that less quantum well number in the active region enhances carrier matching and radiative recombination rate, leading to higher quantum efficiency and output power. Effectiveness of the electron blocking layer (EBL) for micro-LED is discussed. By removing the EBL, the electron confinement and hole injection are found to be improved simultaneously, hence the emission of micro-LED is enhanced significantly at low current density. The recombination processes regarding Auger and Shockley–Read–Hall are investigated, and the sensitivity to defect is highlighted for micro-LED at low current density.Synopsis: The polarization-induced QCSE, the carrier transport and matching, and recombination processes of InGaN micro-LEDs operating at low current density are numerically investigated. Based on the understanding of these device behaviors and mechanisms, specifically designed epitaxial structures including two QWs, highly doped or without EBL and p-GaN with high hole concentration for the efficient micro-LED emissive display are proposed. The sensitivity to defect density is also highlighted for micro-LED.


2021 ◽  
pp. 106953
Author(s):  
Gnyaneshwar Dasi ◽  
Thyda Lavanya ◽  
Govindasamy Sathiyan ◽  
Raju Kumar Gupta ◽  
Ashish Garg ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 901
Author(s):  
Gizem Acar ◽  
Muhammad Javaid Iqbal ◽  
Mujeeb Ullah Chaudhry

Organic light-emitting field-effect transistors (LEFETs) provide the possibility of simplifying the display pixilation design as they integrate the drive-transistor and the light emission in a single architecture. However, in p-type LEFETs, simultaneously achieving higher external quantum efficiency (EQE) at higher brightness, larger and stable emission area, and high switching speed are the limiting factors for to realise their applications. Herein, we present a p-type polymer heterostructure-based LEFET architecture with electron and hole injection interlayers to improve the charge injection into the light-emitting layer, which leads to better recombination. This device structure provides access to hole mobility of ~2.1 cm2 V−1 s−1 and EQE of 1.6% at a luminance of 2600 cd m−2. Most importantly, we observed a large area emission under the entire drain electrode, which was spatially stable (emission area is not dependent on the gate voltage and current density). These results show an important advancement in polymer-based LEFET technology toward realizing new digital display applications.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Peng Yang ◽  
Guangchao Li ◽  
Jianyong Zhu

Abstract The film effectiveness was investigated on a grooved surface with the injection orientation angles of 30°, 90°, and 150° at the blowing ratios of 0.5, 0.8, 1.1, and 1.4. The injection orientation angle and the groove on the surface caused the effect of the various and irregular shaped hole injection due to the different orientation injection. The results showed that the new phenomenon of film effectiveness distributions was found on the grooved surface compared with the flat plate case. Film effectiveness distributions for the β = 30° were found to be the discontinuous strips. The surface averaged film effectiveness with the orientation angle of 30° was found to decrease with the increase of the blowing ratio. Additionally, the reverse trend was observed with the orientation angle of 150°. The film effectiveness with the orientation angle of 90° only slightly changed with the increase of the blowing ratio.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonas Kublitski ◽  
Axel Fischer ◽  
Shen Xing ◽  
Lukasz Baisinger ◽  
Eva Bittrich ◽  
...  

AbstractDetection of electromagnetic signals for applications such as health, product quality monitoring or astronomy requires highly responsive and wavelength selective devices. Photomultiplication-type organic photodetectors have been shown to achieve high quantum efficiencies mainly in the visible range. Much less research has been focused on realizing near-infrared narrowband devices. Here, we demonstrate fully vacuum-processed narrow- and broadband photomultiplication-type organic photodetectors. Devices are based on enhanced hole injection leading to a maximum external quantum efficiency of almost 2000% at −10 V for the broadband device. The photomultiplicative effect is also observed in the charge-transfer state absorption region. By making use of an optical cavity device architecture, we enhance the charge-transfer response and demonstrate a wavelength tunable narrowband photomultiplication-type organic photodetector with external quantum efficiencies superior to those of pin-devices. The presented concept can further improve the performance of photodetectors based on the absorption of charge-transfer states, which were so far limited by the low external quantum efficiency provided by these devices.


Sign in / Sign up

Export Citation Format

Share Document