scholarly journals Intramuscular adipocyte and fatty acid differences between high‐fat and control rabbit groups subject to a restricted diet

Author(s):  
YanHong Li ◽  
Mingchuan Gan ◽  
Tao Tang ◽  
Jiahao Shao ◽  
Tianfu Lai ◽  
...  
2002 ◽  
Vol 87 (6) ◽  
pp. 555-559 ◽  
Author(s):  
Peter H. Bisschop ◽  
Mariëtte T. Ackermans ◽  
Erik Endert ◽  
An F. C. Ruiter ◽  
Alfred J. Meijer ◽  
...  

Diet composition and energy content modulate free fatty acid (FFA) release. The aim of this study was to evaluate the dose–response effects of euenergetic variations in dietary carbohydrate and fat content on postabsorptive FFA release. The rate of appearance (Ra) of palmitate was measured by infusion of [2,2-2H2]palmitate after an overnight fast in six healthy men on three separate occasions, i.e. after 7 d on euenergetic control, high-carbohydrate and high-fat diets. The protein content and composition was identical for each diet. Postabsorptive plasma fatty acid concentrations were not different between the high-carbohydrate and control diets (0·36 (SE 0·07) V. 0·43 (se 0·04) mmol/l), but were increased after the high-fat diet (0·75 (se 0·09) mmol/l, (P<0·01 compared with the other diets). Ra palmitate was not different between the high-carbohydrate and control diets (1·36 (se 0·20) v. 1·47 (se 0·15) μmol/kg per min). However, Ra palmitate was increased to 2·36 (se 0·26) μmol/kg per min after the high-fat diet (P<0·01 compared with the other diets). The fatty acid flux and whole-body fat oxidation were not affected by the high-carbohydrate diet compared with the control diet, but were increased by 67 and 47 % respectively, on the high-fat diet (P<0·01 compared with the other diets). A euenergetic high-fat diet results in increased postabsorptive FFA release and fat oxidation, whereas a euenergetic high-carbohydrate diet does not affect these variables of fat metabolism.


2021 ◽  
pp. 1-8
Author(s):  
Maroula Lambidou ◽  
Birgit Alteheld ◽  
Rolf Fimmers ◽  
Frank Jochum ◽  
Antonia Nomayo ◽  
...  

<b><i>Introduction:</i></b> Recently, new commercial infant formulas have been composed considering novel fat blends and oligosaccharides to better resemble the fatty acid (FA) composition and stereospecific distribution (e.g., increased amount of ß-palmitate) as well as probiotics content of human breast milk. We hypothesized that these newly composed infant formulas may decrease fecal FA soap excretion and may positively affect erythrocyte FA profiles compared with regular formulas. <b><i>Methods:</i></b> Healthy infants were randomly assigned to receive a high-sn-2-palmitate formula (&#x3e;25% of the PA is esterified to the sn-2 position of the glycerol backbone, verum: <i>n</i> = 30) or a “standard” formula containing &#x3c;10% of PA in sn-2 position and no oligosaccharides (control: <i>n</i> = 27); a non-randomized group of breast-fed infants served as control. Anthropometric data of the infants (body weight, recumbent length, and head circumference) were recorded at inclusion (visit 1) and 6 and 12 weeks after onset of intervention (visits 2 and 3). Blood samples for erythrocyte FA analysis (gas chromatography) were taken at visits 1 and 2; stool samples were collected at visit 2. <b><i>Results:</i></b> Quantitative formula intake (mL/kg body weight × day) at visit 2 (verum: 155 ± 30, control: 164 ± 30) and visit 3 (verum: 134 ± 26, control: 134 ± 21) was comparable. Six weeks after onset of intervention, stool total FA soaps, palmitate soaps, and total FAs were similar in both formula-fed groups but significantly higher than in breast-fed infants. During the 6-week intervention, erythrocyte palmitate decreased significantly from baseline in all 3 groups with no group differences (verum: 29.20 ± 1.17 to 27.12 ± 0.66, control: 29.88 ± 2.00 to 27.01 ± 0.94, breast-fed: 30.20 ± 0.86 to 26.84 ± 0.98). For selected FAs, significant changes over time in verum and control group were obvious but without formula effects. Some variations in the FA profile of breast-fed infants compared to both verum and control groups were observed. <b><i>Conclusions:</i></b> In contrast to our hypothesis, feeding a newly composed infant formula based on a fat blend with 25% of PA in the sn-2 position of triacylglycerols and supplemented with a prebiotic could not decrease insoluble FA soap excretion compared with a standard product; in this respect, breastfeeding is obviously the best choice. Surprisingly, erythrocyte FA profiles were comparable in formula-fed and breast-fed infants; obvious alterations in FA composition of the respective fat sources and structure did not affect FA incorporation into membranes. Caution should be, however, exercised in drawing robust conclusions in the absence of larger, adequately powered intervention studies.


2003 ◽  
Vol 19 (5) ◽  
pp. 385-390 ◽  
Author(s):  
Igor Sukhotnik ◽  
A. Semih Gork ◽  
Min Chen ◽  
Robert A. Drongowski ◽  
Arnold G. Coran ◽  
...  

1961 ◽  
Vol 200 (4) ◽  
pp. 847-850 ◽  
Author(s):  
Judith K. Patkin ◽  
E. J. Masoro

Cold acclimation is known to alter hepatic lipid metabolism. Liver slices from cold-acclimated rats have a greatly depressed capacity to synthesize long-chain fatty acids from acctate-1-C14. Since adipose tissue is the major site of lipogenic activity in the intact animal, its fatty acid synthetic capacity was studied. In contrast to the liver, it was found that adipose tissue from the cold-acclimated rat synthesized three to six times as much long-chain fatty acids per milligram of tissue protein as the adipose tissue from the control rat living at 25°C. Evidence is presented indicating that adipose tissue from cold-acclimated and control rats esterify long-chain fatty acids at the same rate. The ability of adipose tissue to oxidize palmitic acid to CO2 was found to be unaltered by cold acclimation. The fate of the large amount of fatty acid synthesized in the adipose tissue of cold-acclimated rats is discussed.


2011 ◽  
Vol 106 (4) ◽  
pp. 491-501 ◽  
Author(s):  
Manar Aoun ◽  
Francoise Michel ◽  
Gilles Fouret ◽  
Audrey Schlernitzauer ◽  
Vincent Ollendorff ◽  
...  

Accumulation of muscle TAG content and modification of muscle phospholipid fatty acid pattern may have an impact on lipid metabolism, increasing the risk of developing diabetes. Some polyphenols have been reported to modulate lipid metabolism, in particular those issued from red grapes. The present study was designed to determine whether a grape polyphenol extract (PPE) modulates skeletal muscle TAG content and phospholipid fatty acid composition in high-fat–high-sucrose (HFHS) diet-fed rats. Muscle plasmalemmal and mitochondrial fatty acid transporters, GLUT4 and lipid metabolism pathways were also explored. The PPE decreased muscle TAG content in HFHS/PPE diet-fed rats compared with HFHS diet-fed rats and induced higher proportions of n-3 PUFA in phospholipids. The PPE significantly up-regulated GLUT4 mRNA expression. Gene and protein expression of muscle fatty acid transporter cluster of differentiation 36 (CD36) was increased in HFHS diet-fed rats but returned to control values in HFHS/PPE diet-fed rats. Carnitine palmitoyltransferase 1 protein expression was decreased with the PPE. Mitochondrial β-hydroxyacyl CoA dehydrogenase was increased in HFHS diet-fed rats and returned to control values with PPE supplementation. Lipogenesis, mitochondrial biogenesis and mitochondrial activity were not affected by the PPE. In conclusion, the PPE modulated membrane phospholipid fatty acid composition and decreased muscle TAG content in HFHS diet-fed rats. The PPE lowered CD36 gene and protein expression, probably decreasing fatty acid transport and lipid accumulation within skeletal muscle, and increased muscle GLUT4 expression. These effects of the PPE are in favour of a better insulin sensibility.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Krista A. Varady ◽  
Vi T. Dam ◽  
Monica C. Klempel ◽  
Matthew Horne ◽  
Rani Cruz ◽  
...  

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Shahram Ejtemaei Mehr

Cardiovascular disease is the leading cause of death among African Americans (AA). Reduced parasympathetic tone as measured by high frequency heart rate variability (HF RRI ) predicts cardiovascular mortality. HF RRI is reduced after a high fat meal through caveolar sequestration of muscarinic M2 receptors. The fatty acid translocase CD36 is a protein abundant in the myocardium and important for heart function and lipid metabolism. CD36 plasma membrane localization and function in fatty acid uptake is modulated by its interaction with caveolin. One in four AAs are G-allele carriers for CD36 SNP rs3211938 resulting in ~50% decreased CD36 expression. CD36 deficiency also reduces fat taste perception, which might lead to higher fat intake to reach taste saturation. We tested the hypothesis that obese AAs with partial CD36 deficiency have altered parasympathetic tone during fasting and after a high-fat meal. We recruited 13 G-allele carriers and 39 non-carriers. Subjects were matched by age (P=0.820), BMI (P=0.751), and blood pressure (P=0.701). There was a trend towards reduction in heart rate in carriers (P=0.07). Baseline HF RRI was elevated in G carriers (557.1 [251 to 942] vs. 224 [95 to 655] ms 2 , P=0.046). Eleven subjects received a high-fat meal (700 Cal/m 2 BSA, 80% fat). HF RRI was measured at baseline and 30, 60, 120, 240 minutes after meal. Non-carriers (n=4) showed a time-dependent decline in the percent change in HF RRI (-23, -32, -70, -84, respectively). In G-allele carriers (N=6), the decline in HF RRI (21, -11, -61, -70 min) was attenuated. Conclusion: AAs with partial CD36 deficiency have enhanced fasting parasympathetic tone and a blunted response to a high fat meal.


Sign in / Sign up

Export Citation Format

Share Document