Outgrowth Endothelial Cells: Sources, Characteristics and Potential Applications in Tissue Engineering and Regenerative Medicine

Author(s):  
Sabine Fuchs ◽  
Eva Dohle ◽  
Marlen Kolbe ◽  
Charles James Kirkpatrick
2021 ◽  
Vol 2021 ◽  
pp. 1-20 ◽  
Author(s):  
Dhinakaran Veeman ◽  
M. Swapna Sai ◽  
P. Sureshkumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
...  

As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1633 ◽  
Author(s):  
Gen Wang ◽  
Luanluan Jia ◽  
Fengxuan Han ◽  
Jiayuan Wang ◽  
Li Yu ◽  
...  

Fibrous hydrogel scaffolds have recently attracted increasing attention for tissue engineering applications. While a number of approaches have been proposed for fabricating microfibers, it remains difficult for current methods to produce materials that meet the essential requirements of being simple, flexible and bio-friendly. It is especially challenging to prepare cell-laden microfibers which have different structures to meet the needs of various applications using a simple device. In this study, we developed a facile two-flow microfluidic system, through which cell-laden hydrogel microfibers with various structures could be easily prepared in one step. Aiming to meet different tissue engineering needs, several types of microfibers with different structures, including single-layer, double-layer and hollow microfibers, have been prepared using an alginate-methacrylated gelatin composite hydrogel by merely changing the inner and outer fluids. Cell-laden single-layer microfibers were obtained by subsequently seeding mouse embryonic osteoblast precursor cells (MC3T3-E1) cells on the surface of the as-prepared microfibers. Cell-laden double-layer and hollow microfibers were prepared by directly encapsulating MC3T3-E1 cells or human umbilical vein endothelial cells (HUVECs) in the cores of microfibers upon their fabrication. Prominent proliferation of cells happened in all cell-laden single-layer, double-layer and hollow microfibers, implying potential applications for them in tissue engineering.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Siavash Shariatzadeh ◽  
Sepehr Shafiee ◽  
Ali Zafari ◽  
Tahereh Tayebi ◽  
Ghasem Yazdanpanah ◽  
...  

AbstractDecellularized and de-epithelialized placenta membranes have widely been used as scaffolds and grafts in tissue engineering and regenerative medicine. Exceptional pro-angiogenic and biomechanical properties and low immunogenicity have made the amniochorionic membrane a unique substrate which provides an enriched niche for cellular growth. Herein, an optimized combination of enzymatic solutions (based on streptokinase) with mechanical scrapping is used to remove the amniotic epithelium and chorion trophoblastic layer, which resulted in exposing the basement membranes of both sides without their separation and subsequent damages to the in-between spongy layer. Biomechanical and biodegradability properties, endothelial proliferation capacity, and in vivo pro-angiogenic capabilities of the substrate were also evaluated. Histological staining, immunohistochemistry (IHC) staining for collagen IV, and scanning electron microscope demonstrated that the underlying amniotic and chorionic basement membranes remained intact while the epithelial and trophoblastic layers were entirely removed without considerable damage to basement membranes. The biomechanical evaluation showed that the scaffold is suturable. Proliferation assay, real-time polymerase chain reaction for endothelial adhesion molecules, and IHC demonstrated that both side basement membranes could support the growth of endothelial cells without altering endothelial characteristics. The dorsal skinfold chamber animal model indicated that both side basement membranes could promote angiogenesis. This bi-sided substrate with two exposed surfaces for cultivating various cells would have potential applications in the skin, cardiac, vascularized composite allografts, and microvascular tissue engineering.


2020 ◽  
Author(s):  
Hossein Tavassoli ◽  
Young Chan Kang ◽  
Prunella Rorimpandey ◽  
John E Pimanda ◽  
Vashe Chandrakanthan ◽  
...  

AbstractThe neonatal heart has been the focus of numerous investigations due to its inherent regenerative potential. However, the interactions between neonatal cardiomyocytes (CMs) and endothelial cells (ECs) have been difficult to model and study due to the lack of an appropriate device. Here, we developed a method to culture primary neonatal CMs and ECs in a microchip and characterise their behavioural properties over a 14-day period. By implementing cell migration analyses coupled with immunostaining and confocal microscopy, we were able to identify and quantify sub-populations of migratory and non-migratory ECs. In CM–EC co-cultures, migrating ECs were found to move in higher numbers and longer distances compared to migrating CMs. In the presence of CMs, non-migrating ECs established connexin gap junctions and formed CM–EC cell aggregates, which were likely a priming event for endothelial organoid formation. This microfluidic device also enabled us to visualise the temporal sequence organoid formation and phenomena such as collective cell migration, CM–EC trans-differentiation and synchronisation of CM beating. This microchip based culture system has potential applications for tissue engineering and drug discovery.


2020 ◽  
Vol 26 (7) ◽  
pp. 1313-1334 ◽  
Author(s):  
Nataraj Poomathi ◽  
Sunpreet Singh ◽  
Chander Prakash ◽  
Arjun Subramanian ◽  
Rahul Sahay ◽  
...  

Purpose In the past decade, three-dimensional (3D) printing has gained attention in areas such as medicine, engineering, manufacturing art and most recently in education. In biomedical, the development of a wide range of biomaterials has catalysed the considerable role of 3D printing (3DP), where it functions as synthetic frameworks in the form of scaffolds, constructs or matrices. The purpose of this paper is to present the state-of-the-art literature coverage of 3DP applications in tissue engineering (such as customized scaffoldings and organs, and regenerative medicine). Design/methodology/approach This review focusses on various 3DP techniques and biomaterials for tissue engineering (TE) applications. The literature reviewed in the manuscript has been collected from various journal search engines including Google Scholar, Research Gate, Academia, PubMed, Scopus, EMBASE, Cochrane Library and Web of Science. The keywords that have been selected for the searches were 3 D printing, tissue engineering, scaffoldings, organs, regenerative medicine, biomaterials, standards, applications and future directions. Further, the sub-classifications of the keyword, wherever possible, have been used as sectioned/sub-sectioned in the manuscript. Findings 3DP techniques have many applications in biomedical and TE (B-TE), as covered in the literature. Customized structures for B-TE applications are easy and cost-effective to manufacture through 3DP, whereas on many occasions, conventional technologies generally become incompatible. For this, this new class of manufacturing must be explored to further capabilities for many potential applications. Originality/value This review paper presents a comprehensive study of the various types of 3DP technologies in the light of their possible B-TE application as well as provides a future roadmap.


Author(s):  
Ketan Thakare ◽  
Xingjian Wei ◽  
Laura Jerpseth ◽  
Abhinav Bhardwaj ◽  
Hongmin Qin ◽  
...  

Abstract Bioprinting has many potential applications in drug screening, tissue engineering, and regenerative medicine. In extrusion-based bioprinting, the extruded strand is the fundamental building block for printed constructs and needs to be of good quality and continuous in structure. In recent years, many studies have been conducted on extrusion-based bioprinting. However, values of process parameters leading to continuous extrusion of strands have rarely been reported. In this paper, feasible regions of bioink composition, extrusion pressure, and needle size for continuous strand extrusion have been evaluated. The information on feasible regions for extruding continuous strands, provided in this paper, can be useful in deciding appropriate extrusion pressure and needle size for the bioink of different compositions (ratios of alginate:methylcellulose) in extrusion-based bioprinting.


2021 ◽  
Author(s):  
Siavash Shariatzadeh ◽  
Sepehr Shafiee ◽  
Tahereh Tayebi ◽  
Ghasem Yazdanpanah ◽  
Alireza Majd ◽  
...  

Abstract Decellularized placental membrane has widely been used as scaffold and graft in tissue engineering and regenerative medicine. Exceptional pro-angiogenic and biomechanical properties and low immunogenicity have made the amniochorionic membrane a unique scaffold which provides enriched niche for cellular growth. Herein, an optimized combination of enzymatic solutions (based on Streptokinase) with mechanical scrapping is used to remove the amniotic epithelium and chorion trophoblastic layer, which results in exposing the basement membranes of both sides without their separation and subsequent damages to the in-between spongy layer. Biomechanical and biodegradability properties, endothelial proliferation capacity, and in-vivo pro-angiogenic capabilities of the scaffold were also evaluated. Histological staining and scanning electron microscope (SEM) demonstrated that the underlying amniotic and chorionic basement membranes remained intact while the epithelial and trophoblastic layers were entirely removed without considerable damage to basement membranes. The biomechanical evaluation showed that the scaffold is suturable. Proliferation assay and immunohistochemistry demonstrated that both side basement membranes could support growth of endothelial cells without altering endothelial characteristics. The dorsal skinfold chamber animal model indicated that both side basement membranes could promote angiogenesis. This bi-sided decellularized scaffold with two exposed surfaces for cultivating various cells would have potential applications in skin, cardiac, vascularized composite allografts, and microvascular tissue engineering.


2015 ◽  
Vol 6 (5) ◽  
pp. 291-298
Author(s):  
Barbara Różalska ◽  
Bartłomiej Micota ◽  
Małgorzata Paszkiewicz ◽  
Beata Sadowska

2017 ◽  
Vol 68 (6) ◽  
pp. 1341-1344
Author(s):  
Grigore Berea ◽  
Gheorghe Gh. Balan ◽  
Vasile Sandru ◽  
Paul Dan Sirbu

Complex interactions between stem cells, vascular cells and fibroblasts represent the substrate of building microenvironment-embedded 3D structures that can be grafted or added to bone substitute scaffolds in tissue engineering or clinical bone repair. Human Adipose-derived Stem Cells (hASCs), human umbilical vein endothelial cells (HUVECs) and normal dermal human fibroblasts (NDHF) can be mixed together in three dimensional scaffold free constructs and their behaviour will emphasize their potential use as seeding points in bone tissue engineering. Various combinations of the aforementioned cell lines were compared to single cell line culture in terms of size, viability and cell proliferation. At 5 weeks, viability dropped for single cell line spheroids while addition of NDHF to hASC maintained the viability at the same level at 5 weeks Fibroblasts addition to the 3D construct of stem cells and endothelial cells improves viability and reduces proliferation as a marker of cell differentiation toward osteogenic line.


Sign in / Sign up

Export Citation Format

Share Document