Low Temperature Mechanical Properties of CeO2-Alloyed Tetragonal Zirconia

Author(s):  
T. K. Gupta ◽  
C. A. Andersson
2013 ◽  
Vol 320 ◽  
pp. 505-511
Author(s):  
Ning Li ◽  
Zhi Kai Wu ◽  
Chao Jian ◽  
Wan Qian Zhao ◽  
Jia Zhen Yan

During the 20th century, both dental materials and dental technologies for the fabrication of dental prosthesis progressed remarkably. Owing to the increased demand of safety and aesthetics, 3 mol% yttria stabilized tetragonal zirconia polycrystalline has been recently introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures, in combination with CAD/CAM technique. This greatly changed the conventional dental laboratory work which is labor-intensive and experience-dependent. This review mainly introduced the state of dental zirconia and the application of CAD/CAM technology in dentistry. Key words: Dental Zirconia; CAD/CAM Technique; Mechanical Properties; Transformation Toughing; Low Temperature Aging;


2014 ◽  
Vol 606 ◽  
pp. 85-88
Author(s):  
Mohamed M. Aboras ◽  
Kai Yuan Theng ◽  
Andanastuti Muchtar ◽  
Che Husna Azhari ◽  
Norziha Yahaya

The use of tetragonal zirconia as a dental restorative material has recently increased because of its unique mechanical and optical properties, as well as high biological compatibility with the oral cavity environment. However, the mechanical properties of zirconia can be severely degraded, which leads to the failure of dental restorations. This review focuses on the low-temperature degradation of dental zirconia and its effects on the properties of zirconia and on the oral environment. The purpose is to show the importance of this negative phenomenon and suggest guidelines for minimizing the aging of zirconia that is used as a dental restoration material.


2003 ◽  
Vol 18 (10) ◽  
pp. 2415-2426 ◽  
Author(s):  
J. Muñoz-Saldaña ◽  
H. Balmori-Ramírez ◽  
D. Jaramillo-Vigueras ◽  
T. Iga ◽  
G. A. Schneider

The influence of grain size and density of yttria-tetragonal zirconia polycrystals (Y-TZPs) ceramics on mechanical properties and on low-temperature aging degradation (LTD) in air and in hot water was investigated. A TZP powder containing 3 mol% Y2O3 was consolidated by slip casting and densified by the sintering/hot isostatic pressing (HIP) method. Only the presintered samples that contained less than 0.15% open porosity reached near full density after HIP. The best conditions to reach full density were found to be attained by presintering and HIP both at 1400 °C. At these conditions, some of the best mechanical properties such as modulus of rupture and Weibull modulus reached 1397 ± 153 MPa and, 10.6, respectively. These values were clearly higher than those obtained from sintered bodies and samples hot isostatically pressed at 1600 °C. Aging degradation of 3Y-TZP materials can be avoided through microstructural design. Fully dense materials with a critical grain size <0.36 μm did not show any evidence of degradation after extreme aging conditions at pressurized autoclaving in hot water at 100, 200, and 260 °C for 8 h. We propose a criterion to predict degradation in air as well as in hot water for the characterized materials based on the microstructure and density control of the samples.


1993 ◽  
Vol 12 (9) ◽  
pp. 684-686 ◽  
Author(s):  
R. Ponraj ◽  
V. E. Annamalai ◽  
S. Ramakrishna Iyer ◽  
C. V. Gokularathnam ◽  
R. Krishnamurthy

1993 ◽  
Vol 12 (9) ◽  
pp. 671-673 ◽  
Author(s):  
V. E. Annamalai ◽  
R. Ponraj ◽  
S. Ramakrishna Iyer ◽  
C. V. Gokularathnam ◽  
R. Krishnamurthy

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1821
Author(s):  
Ildar I. Salakhov ◽  
Nadim M. Shaidullin ◽  
Anatoly E. Chalykh ◽  
Mikhail A. Matsko ◽  
Alexey V. Shapagin ◽  
...  

Low-temperature properties of high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and their blends were studied. The analyzed low-temperature mechanical properties involve the deformation resistance and impact strength characteristics. HDPE is a bimodal ethylene/1-hexene copolymer; LDPE is a branched ethylene homopolymer containing short-chain branches of different length; LLDPE is a binary ethylene/1-butene copolymer and an ethylene/1-butene/1-hexene terpolymer. The samples of copolymers and their blends were studied by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), 13С NMR spectroscopy, and dynamic mechanical analysis (DMA) using testing machines equipped with a cryochamber. It is proposed that such parameters as “relative elongation at break at −45 °C” and “Izod impact strength at −40 °C” are used instead of the ductile-to-brittle transition temperature to assess frost resistance properties because these parameters are more sensitive to deformation and impact at subzero temperatures for HDPE. LLDPE is shown to exhibit higher relative elongation at break at −45 °C and Izod impact strength at −20 ÷ 60 °C compared to those of LDPE. LLDPE terpolymer added to HDPE (at a content ≥ 25 wt.%) simultaneously increases flow properties and improves tensile properties of the blend at −45 °C. Changes in low-temperature properties as a function of molecular weight, MWD, crystallinity, and branch content were determined for HDPE, LLDPE, and their blends. The DMA data prove the resulting dependences. The reported findings allow one to understand and predict mechanical properties in the HDPE–LLDPE systems at subzero temperatures.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Przemysław Snopiński ◽  
Mariusz Król ◽  
Marek Pagáč ◽  
Jana Petrů ◽  
Jiří Hajnyš ◽  
...  

AbstractThis study investigated the impact of the equal channel angular pressing (ECAP) combined with heat treatments on the microstructure and mechanical properties of AlSi10Mg alloys fabricated via selective laser melting (SLM) and gravity casting. Special attention was directed towards determining the effect of post-fabrication heat treatments on the microstructural evolution of AlSi10Mg alloy fabricated using two different routes. Three initial alloy conditions were considered prior to ECAP deformation: (1) as-cast in solution treated (T4) condition, (2) SLM in T4 condition, (3) SLM subjected to low-temperature annealing. Light microscopy, transmission electron microscopy, X-ray diffraction line broadening analysis, and electron backscattered diffraction analysis were used to characterize the microstructures before and after ECAP. The results indicated that SLM followed by low-temperature annealing led to superior mechanical properties, relative to the two other conditions. Microscopic analyses revealed that the partial-cellular structure contributed to strong work hardening. This behavior enhanced the material’s strength because of the enhanced accumulation of geometrically necessary dislocations during ECAP deformation.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2119
Author(s):  
Lin Yu ◽  
Shiman Liu ◽  
Weiwei Yang ◽  
Mengying Liu

In order to elucidate the aging performance and aging mechanism of a rubber waterstop in low-temperature environments, the rubber waterstops were placed in the freezing test chamber to accelerate aging, and then we tested its tensile strength, elongation, tear strength, compression permanent deformation and hardness at different times. Additionally, the damaged specimens were tested by scanning electron microscope, Fourier transform infrared spectroscopy and energy dispersive spectrometry. The results showed that with the growth of aging time, the mechanical properties of the rubber waterstop are reduced. At the same time, many protrusions appeared on the surface of the rubber waterstop, the C element gradually decreased, and the O element gradually increased. During the period of 72–90 days, the content of the C element in the low-temperature air environment significantly decreased compared with that in low-temperature water, while the content of O element increased significantly.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 335
Author(s):  
Gyuwon Jeong ◽  
Dong-Yurl Yu ◽  
Seongju Baek ◽  
Junghwan Bang ◽  
Tae-Ik Lee ◽  
...  

The effects of Ag nanoparticle (Ag NP) addition on interfacial reaction and mechanical properties of Sn–58Bi solder joints using ultra-fast laser soldering were investigated. Laser-assisted low-temperature bonding was used to solder Sn–58Bi based pastes, with different Ag NP contents, onto organic surface preservative-finished Cu pads of printed circuit boards. The solder joints after laser bonding were examined to determine the effects of Ag NPs on interfacial reactions and intermetallic compounds (IMCs) and high-temperature storage tests performed to investigate its effects on the long-term reliabilities of solder joints. Their mechanical properties were also assessed using shear tests. Although the bonding time of the laser process was shorter than that of a conventional reflow process, Cu–Sn IMCs, such as Cu6Sn5 and Cu3Sn, were well formed at the interface of the solder joint. The addition of Ag NPs also improved the mechanical properties of the solder joints by reducing brittle fracture and suppressing IMC growth. However, excessive addition of Ag NPs degraded the mechanical properties due to coarsened Ag3Sn IMCs. Thus, this research predicts that the laser bonding process can be applied to low-temperature bonding to reduce thermal damage and improve the mechanical properties of Sn–58Bi solders, whose microstructure and related mechanical properties can be improved by adding optimal amounts of Ag NPs.


Sign in / Sign up

Export Citation Format

Share Document