Utilization of Near-Infrared Fluorescent Imaging for Pharmaceutically Relevant Applications

Author(s):  
Jelena M. Janjic ◽  
Sravan Kumar Patel ◽  
Christina Bagia
2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


Author(s):  
Ruiyuan Liu ◽  
Yuping Zhou ◽  
Di Zhang ◽  
Genghan He ◽  
Chuang Liu ◽  
...  

Design and synthesis of near-infrared (NIR) emissive fluorophore for imaging of organelle and photodynamic therapy has received enormous attention. Hence, NIR emissive fluorophore of high-fidelity lysosome targeting, two-photon fluorescence imaging,...


2021 ◽  
Vol 32 (1) ◽  
pp. 015003
Author(s):  
Sang-Woo Seo ◽  
Youngsik Song ◽  
Hojjat Rostami Azmand

Abstract Controlled photothermal actuation of liquid release is presented using periodically arrayed hydrogel columns in a macroporous silicon membrane. Thermo-responsive hydrogel is mixed with Gold (Au) nanorods, and surface plasmon-induced local heating by near-infrared (NIR) light is utilized as an actuation method. We adopted theoretical modeling, which treats the hydrogel as a poro-viscoelastic medium to understand the mechanical and liquid transport properties of the hydrogel. To demonstrate the feasibility of the liquid release control using NIR light, we first characterized the temperature response of Au nanorod embedded hydrogel in the silicon membrane using its optical transmission behavior to confirm the successful device fabrication. Next, the liquid release characteristics from the structure were studied using fluorescent imaging of fluorescein dye solution while pulsed NIR light was illuminated on the structure. We successfully demonstrate that the liquid release can be controlled using remote NIR illumination from the presented structure. Considering the periodically arrayed configuration with high spatial resolution, this will have a potential prospect for optically-addressable chemical release systems, which benefit retina prosthesis interfaces.


2021 ◽  
Vol 21 (12) ◽  
pp. 5965-5971
Author(s):  
Xiaofang Song ◽  
Lifo Ruan ◽  
Tianyu Zheng ◽  
Jun Wei ◽  
Jiayu Zhang ◽  
...  

Facile preparation of a tumoral-stimuli-activated theranostic nanoparticle with simple constituents remains a challenge for tumor theranostic nanosystems. Herein we design a simple reductionresponsive turn-on theranostic nanoparticle for achieving fluorescent imaging and phototherapy combination. The theranostic nanoparticle is prepared by a simple one-step dialysis method of reduction active amphiphilic hyperbranched poly(β-amidoamines) and a near-infrared (NIR) dye indocyanine green (ICG). The fluorescence of ICG is quenched by the aggregation-caused quenching (ACQ) effect. The fluorescent intensity of free ICG at 816 nm was ∼40 times as high as that of particulate ICG. After reductive nanoparticles incubated with dithiothreitol (DTT), the size of the nanoparticles increased from 160 nm to 610 nm by Dynamic light scattering (DLS). As nanoparticles were internalized by cancer cells, the disulfide bonds would be cleaved by intracellular reduction agents like glutathione (GSH), leading to the release of entrapped ICG. The released ICG regained its fluorescence for self-monitoring the release and therapeutic effect of ICG by fluorescence spectra and the quantitative evaluation of NIR fluorescence intensity. Remarkably, nanoparticles can also reinforce antitumor efficacy through photodynamic therapy and GSH depletion property. This study provides new insights into designing turn-on theranostic systems.


2019 ◽  
Author(s):  
Yuqing Chen ◽  
Wei Wu ◽  
Zeqiao Xu ◽  
Cheng Jiang ◽  
Shuang Han ◽  
...  

Abstract Background: Treatment of multidrug-resistant (MDR) bacterial infection is a great challenge in public health. Herein, we provide a solution to this problem with the use of graphene oxide-silver (GO-Ag) nanocomposites as anti-bacterial agent. Methods: Following established protocols, silver nanoparticles were grown on graphene oxide sheets. Then, a series of in-vitro studies were conducted to validate the antibacterial efficiency of the GO-Ag nanocomposites against clinical MDR Escherichia coli (E. coli) strains. Firstly, minimum inhibitory concentrations (MICs) of different antimicrobials were tested against MDR E. Coli strains. Then, bacteria viability assessments were conducted with different nanomaterials in Luria-Bertani (LB) broth. Afterwards, photothermal irradiation was conducted on MDR E. coli with lower GO-Ag concentration. At last, fluorescent imaging and morphology characterization using scanning electron microscope (SEM) were done to find the possible cause of antibacterial effect. Results: GO-Ag nanocomposites showed the highest antibacterial efficiency among tested antimicrobials. Synergetic antibacterial effect was observed in GO-Ag nanocomposites treated group. The remained bacteria viabilities were 4.4% and 4.1% respectively for different bacteria strains with GO-Ag concentration at 14.0 µg mL-1. In addition, GO-Ag nanocomposites have strong absorption in the near-infrared field and can convert the electromagnetic energy to heat. With the use of this photothermal effect, effective sterilization could be achieved using GO-Ag nanocomposites concentration as low as 7.0 µg mL-1. Fluorescent imaging and morphology characterization were used to analyze bacteria living status, which uncovered that bacteria integrity was disrupted after GO-Ag nanocomposites treatment. Conclusions: GO-Ag nanocomposites are proved to be efficient antibacterial agent against multi-drug resistant E. coli. Their strong antibacterial effect arises from inherent antibacterial property and photothermal effect that provides aid for bacteria killing.


2012 ◽  
Vol 187 (4S) ◽  
Author(s):  
Brian M. Rosman ◽  
Joao A. Barbosa ◽  
S. Ted Trevis ◽  
Alan B. Retik ◽  
Hiep T. Nguyen

2014 ◽  
Vol 2 (40) ◽  
pp. 7065-7072 ◽  
Author(s):  
Jia-Tao Miao ◽  
Chen Fan ◽  
Ru Sun ◽  
Yu-Jie Xu ◽  
Jian-Feng Ge

A cellular dye with properties of long-wave emission, large Stokes shift, water solubility, low cytotoxicity, and good photostability is reported.


Author(s):  
Ahmed A. Elbatrawy ◽  
Da Sol Lee ◽  
Sang Bong Lee ◽  
Hui-Jeon Jeon ◽  
Sijoon Lee ◽  
...  

Near-infrared (NIR) fluorescent imaging agents with biocompatibility and high sensitivity are urgently required for the accurate detection of sentinel lymph nodes (SLNs). Herein, we report the design of a novel...


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
Raphael Sommer ◽  
Stewart T. Cole

ABSTRACT Worldwide, tuberculosis (TB) is the leading cause of death due to infection with a single pathogenic agent, Mycobacterium tuberculosis. In the absence of an effective vaccine, new, more powerful antibiotics are required to halt the growing spread of multidrug-resistant strains and to shorten the duration of TB treatment. However, assessing drug efficacy at the preclinical stage remains a long and fastidious procedure that delays the progression of drugs down the pipeline and towards the clinic. In this investigation, we report the construction, optimization, and characterization of genetically engineered near-infrared (NIR) fluorescent reporter strains of the pathogens Mycobacterium marinum and Mycobacterium tuberculosis that enable the direct visualization of bacteria in infected zebrafish and mice, respectively. Fluorescence could be measured precisely in infected immunodeficient mice, while its intensity appeared to be below the limit of detection in immunocompetent mice, probably because of the lower bacterial load obtained in these animals. Furthermore, we show that the fluorescence level accurately reflects the bacterial load, as determined by CFU enumeration, thus enabling the efficacy of antibiotic treatment to be assessed in live animals in real time. The NIR fluorescent imaging system disclosed here is a valuable resource for TB research and can serve to accelerate drug development.


Sign in / Sign up

Export Citation Format

Share Document