Laboratory Setup, Equipment, and Protocols

Author(s):  
Julieann O’Neill ◽  
Laura Bourette
Keyword(s):  
Author(s):  
P. Vikulin ◽  
K. Khlopov ◽  
M. Cherkashin

Enhancing water purification processes is provided by various methods including physical ones, in particular, exposure to ultrasonic vibrations. The change in the dynamic viscosity of water affects the rate of deposition of particles in the aquatic environment which can be used in natural and wastewater treatment. At the Department Water Supply and Wastewater Disposal of the National Research Moscow State University of Civil Engineering experimental studies were conducted under laboratory conditions to study the effect of ultrasound on the change in the dynamic viscosity of water. A laboratory setup has been designed consisting of an ultrasonic frequency generator of the relative intensity, a transducer (concentrator) that transmits ultrasonic vibrations to the source water, and sonic treatment tanks. Experimental studies on the impact of the ultrasonic field in the cavitation mode on the dynamic viscosity of the aqueous medium were carried out the exposure time was obtained to achieve the maximum effect.Интенсификация процессов очистки воды осуществляется с помощью различных методов, в том числе и физических, в частности воздействием ультразвуковых колебаний. Изменение динамической вязкости воды влияет на скорость осаждения частиц в водной среде, что может быть использовано в процессах очистки природных и сточных вод. На кафедре Водоснабжение и водоотведение Национального исследовательского Московского государственного строительного университета в лабораторных условиях проведены экспериментальные исследования по изучению влияния ультразвука на изменение динамической вязкости воды. Разработана схема лабораторной установки, состоящая из генератора ультразвуковых частот с соответствующей интенсивностью, преобразователя (концентратора), передающего ультразвуковые колебания в исходную воду, и емкости для озвучивания. Выполнены экспериментальные исследования по влиянию ультразвукового поля в режиме кавитации на динамическую вязкость водной среды, получено время экспозиции для достижения максимального эффекта.


1991 ◽  
Vol 24 (2) ◽  
pp. 309-314 ◽  
Author(s):  
G. Teutsch ◽  
K. Herbold-Paschke ◽  
D. Tougianidou ◽  
T. Hahn ◽  
K. Botzenhart

In this paper the major processes governing the persistence and underground transport of viruses and bacteria are reviewed in respect to their importance under naturally occurring conditions. In general, the simulation of the governing processes is based on the macroscopic mass-conservation equation with the addition of some filter and/or retardation factor and a decay coefficient, representing the natural “die-off” of the microorganisms. More advanced concepts try to incorporate growth and decay coefficients together with deposition and declogging factors. At present, none of the reported concepts has been seriously validated. Due to the complexity of natural systems and the pathogenic properties of some of the microorganisms, experiments under controlled laboratory conditions are required. A laboratory setup is presented in which a great variety of natural conditions can be simulated. This comprises a set of 1 metre columns and an 8 metre stainless-steel flume with 24 sampling ports. The columns are easily filled and conditioned and therefore used to study the effects of different soil-microorganism combinations under various environmental conditions. In the artificial flume natural underground conditions are simulated using sand and gravel aquifer material from the river Neckar alluvium. A first set of results from the laboratory experiments is presented together with preliminary model simulations. The large variety of observed breakthrough curves and recovery for the bacteria and viruses under investigation demonstrates the great uncertainty encountered in microbiological risk assessment.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 313
Author(s):  
Jacek Rąbkowski ◽  
Andrzej Łasica ◽  
Mariusz Zdanowski ◽  
Grzegorz Wrona ◽  
Jacek Starzyński

The paper describes major issues related to the design of a portable SiC-based DC supply developed for evaluation of a high-voltage Marx generator. This generator is developed to be a part of an electromagnetic cannon providing very high voltage and current pulses aiming at the destruction of electronics equipment in a specific area. The portable DC supply offers a very high voltage gain: input voltage is 24 V, while the generator requires supply voltages up to 50 kV. Thus, the system contains two stages designed on the basis of SiC power devices operating with frequencies up to 100 kHz. At first, the input voltage is boosted up to 400 V by a non-isolated double-boost converter, and then a resonant DC-DC converter with a special transformer elevates the voltage to the required level. In the paper, the main components of the laboratory setup are presented, and experimental results of the DC supply and whole system are also shown.


2021 ◽  
Vol 22 (2) ◽  
pp. 935
Author(s):  
Federica Fazzini ◽  
Liane Fendt ◽  
Sebastian Schönherr ◽  
Lukas Forer ◽  
Bernd Schöpf ◽  
...  

Massive parallel sequencing technologies are promising a highly sensitive detection of low-level mutations, especially in mitochondrial DNA (mtDNA) studies. However, processes from DNA extraction and library construction to bioinformatic analysis include several varying tasks. Further, there is no validated recommendation for the comprehensive procedure. In this study, we examined potential pitfalls on the sequencing results based on two-person mtDNA mixtures. Therefore, we compared three DNA polymerases, six different variant callers in five mixtures between 50% and 0.5% variant allele frequencies generated with two different amplification protocols. In total, 48 samples were sequenced on Illumina MiSeq. Low-level variant calling at the 1% variant level and below was performed by comparing trimming and PCR duplicate removal as well as six different variant callers. The results indicate that sensitivity, specificity, and precision highly depend on the investigated polymerase but also vary based on the analysis tools. Our data highlight the advantage of prior standardization and validation of the individual laboratory setup with a DNA mixture model. Finally, we provide an artificial heteroplasmy benchmark dataset that can help improve somatic variant callers or pipelines, which may be of great interest for research related to cancer and aging.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Nenad Muškinja ◽  
Matej Rižnar

We examined a design approach for a PID controller for a nonlinear ball and beam system. Main objective of our research was to establish a nonmodel based control system, which would also not be dependent on a specific ball and beam hardware setup. The proposed PID controller setup is based on a cascaded configuration of an inner PID ball velocity control loop and an outer proportional ball position control loop. The effectiveness of the proposed controller setup was first presented in simulation environment in comparison to a hardware dependent PD cascaded controller, along with a more comprehensive study on possible design approach for optimal PID controller parameters in relation to main functionality of the controller setup. Experimental real time control results were then obtained on a laboratory setup of the ball and beam system on which PD cascaded controller could not be applied without parallel system model processing.


Author(s):  
K. Сhevchenko ◽  
A. Grigorov ◽  
I. Sinkevich

The article proposes to determine the corrosion effect on fuel metals under dynamic conditions, when washing the prepared copper plate of a certain size, a significant amount of fuel at a certain speed and temperature of the study. This approach will significantly reduce the duration of the study (up to 100 minutes) and is closer to the real conditions of contact of the fuel with a metal surface, in comparison with the standardized method, which is widely used today. Using the proposed laboratory setup, the study was subjected to fuel (200–360 °C), which was obtained by thermal destruction of secondary polymer raw materials, in particular polypropylene. The obtained results showed that the investigated fuel, despite the temperature, the amount of circulating fuel and its water content, does not have a corrosive effect on the copper plate, which can be explained by the absence of corrosive substances in the fuel: water-soluble mineral acids and alkalis, active sulfur compounds and organic acids. However, it should be kept in mind that in polyolefin raw materials, in the form of contamination, there may be products made of other materials, such as rubber and polyvinyl chloride. This can happen when the sorting technology is violated or during the preliminary preparation of raw materials and, in turn, will contribute to the increase in sulfur-containing and chlorine-containing compounds in the fuel, which are characterized by high corrosion activity and should be necessarily removed from the fuel. Note that the fuel obtained from secondary polymer raw materials, in the absence of sulfur-containing and chlorine-containing compounds, is quite promising for the creation on its basis of modern synthetic fuels, analogues of classic petroleum products.


2018 ◽  
Vol 51 (6) ◽  
pp. 1616-1622 ◽  
Author(s):  
Victor Asadchikov ◽  
Alexey Buzmakov ◽  
Felix Chukhovskii ◽  
Irina Dyachkova ◽  
Denis Zolotov ◽  
...  

This article describes complete characterization of the polygonal dislocation half-loops (PDHLs) introduced by scratching and subsequent bending of an Si(111) crystal. The study is based on the X-ray topo-tomography technique using both a conventional laboratory setup and the high-resolution X-ray image-detecting systems at the synchrotron facilities at KIT (Germany) and ESRF (France). Numerical analysis of PDHL images is performed using the Takagi–Taupin equations and the simultaneous algebraic reconstruction technique (SART) tomographic algorithm.


2020 ◽  
Vol 10 (21) ◽  
pp. 7572 ◽  
Author(s):  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anouar Belahcen ◽  
Ants Kallaste ◽  
Anton Rassõlkin ◽  
...  

This paper presents a hybrid finite element method (FEM)–analytical model of a three-phase squirrel cage induction motor solved using parallel processing for reducing the simulation time. The growing development in artificial intelligence (AI) techniques can lead towards more reliable diagnostic algorithms. The biggest challenge for AI techniques is that they need a big amount of data under various conditions to train them. These data are difficult to obtain from the industries because they contain low numbers of possible faulty cases, as well as from laboratories because a limited number of motors can be broken for testing purposes. The only feasible solution is mathematical models, which in the long run can become part of advanced diagnostic techniques. The benefits of analytical and FEM models for their speed and accuracy respectively can be exploited by making a hybrid model. Moreover, the concept of cloud computing can be utilized to reduce the simulation time of the FEM model. In this paper, a hybrid model being solved on multiple processors in a parallel fashion is presented. The results depict that by dividing the rotor steps among several processors working in parallel, the simulation time reduces considerably. The simulation results under healthy and broken rotor bar cases are compared with those taken from a laboratory setup for validation.


Sign in / Sign up

Export Citation Format

Share Document