scholarly journals Growing Rice with Less Water: Improving Productivity by Decreasing Water Demand

2021 ◽  
pp. 147-170
Author(s):  
Balwant Singh ◽  
Shefali Mishra ◽  
Deepak Singh Bisht ◽  
Rohit Joshi

AbstractRice is a staple food for more than half of the global population. With the increasing population, the yield of rice must correspondingly increase to fulfill the requirement. Rice is cultivated worldwide in four different types of ecosystems, which are limited by the availability of irrigation water. However, water-limiting conditions negatively affect rice production; therefore, to enhance productivity under changing climatic conditions, improved cultivation practices and drought-tolerant cultivars/varieties are required. There are two basic approaches to cultivation: (1) plant based and (2) soil and irrigation based, which can be targeted for improving rice production. Crop plants primarily follow three mechanisms: drought escape, avoidance, and tolerance. Based on these mechanisms, different strategies are followed, which include cultivar selection based on yield stability under drought. Similarly, soil- and irrigation-based strategies consist of decreasing non-beneficial water depletions and water outflows, aerobic rice development, alternate wetting and drying, saturated soil culture, system of rice intensification, and sprinkler irrigation. Further strategies involve developing drought-tolerant cultivars through marker-assisted selection/pyramiding, genomic selection, QTL mapping, and other breeding and cultivation practices such as early planting to follow escape strategies and decreasing stand density to minimize competition with weeds. Similarly, the identification of drought-responsive genes and their manipulation will provide a technological solution to overcome drought stress. However, it was the Green Revolution that increased crop production. To maintain the balance, there is a need for another revolution to cope with the increasing demand.

2021 ◽  
Vol 37 ◽  
pp. 00151
Author(s):  
Igor Prikhodko ◽  
Stanislav Vladimirov ◽  
Daniil Alexandrov

The world practice of rice cultivation has shown that rice cultivation by traditional methods for Russia is labor-intensive, resource-intensive, ineffective with low profitability, and often unprofitable production. As a result, traditional methods of flooding rice paddies in Russia are faced with a shortage and high cost of irrigation water and a reduction in rice irrigation systems, i.e., areas suitable for rice cultivation. For solving the problem of unprofitable rice production, an analysis of the world practice of rice production has been implemented. The analysis showed that the most optimal solution for the natural and climatic conditions of the Krasnodar Territory is the cultivation of rice using sprinkler irrigation and drip irrigation. Further analysis showed that drip irrigation is the most promising way of growing rice, which has many undeniable advantages. The main advantages of drip irrigation are the low irrigation rate, labor intensity, and energy intensity of rice production. Therefore, the article proposes a pioneering Russian ridge cultivation method for rice cultivation on the lands of the irrigated rice fund with drip irrigation under plastic and/or biodegradable perforated film. This method will make it possible to radically revise the principles of rice cultivation, form a new generation of rice crop rotations with the inclusion of melons and vegetables in them, and carry out rice production on previously rainfed lands. The implementation of the method has proven the effectiveness and feasibility of our research.


2020 ◽  
Vol 2 (2) ◽  
pp. p7
Author(s):  
Nweke, I. A.

Increasing human population is closely related with the increasing demand of food and pressure on available land with the rising demand on fertilizer that has not been sustainable at the farmer’s level. This causes soil fertility decline, nutrient imbalance and low residual effect which are constraint affecting agricultural production in south eastern soils of Nigeria in particular and to large extent in tropical environment. Land available to be used for intensive crop production activities is limited and this demand for adequate soil testing that will x-ray the fertility status of the soil before crop planting. The characteristics and amount of nutrient elements of a soil and soil biodiversity is influenced by climatic conditions, erosion/leaching, drought, cultivation history/land use system, cropping history, kinds of pesticides/herbicides applied, type and methods of inorganic and organic fertilizer applied. Soil testing quantifies the total value of plant nutrient elements available in a sampled soil that will directly promote crop growth and yield. Due to its biophysical, biochemical, biological and physiochemical results, soil testing when appropriately interpreted and applied may be used effectively to promote sustainable crop production and environmental health in a tropical soil like south eastern, Nigeria.


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 290
Author(s):  
Koffi Djaman ◽  
Curtis Owen ◽  
Margaret M. West ◽  
Samuel Allen ◽  
Komlan Koudahe ◽  
...  

The highly variable weather under changing climate conditions affects the establishment and the cutoff of crop growing season and exposes crops to failure if producers choose non-adapted relative maturity that matches the characteristics of the crop growing season. This study aimed to determine the relationship between maize hybrid relative maturity and the grain yield and determine the relative maturity range that will sustain maize production in northwest New Mexico (NM). Different relative maturity maize hybrids were grown at the Agricultural Science Center at Farmington ((Latitude 36.69° North, Longitude 108.31° West, elevation 1720 m) from 2003 to 2019 under sprinkler irrigation. A total of 343 hybrids were grouped as early and full season hybrids according to their relative maturity that ranged from 93 to 119 and 64 hybrids with unknown relative maturity. The crops were grown under optimal management condition with no stress of any kind. The results showed non-significant increase in grain yield in early season hybrids and non-significant decrease in grain yield with relative maturity in full season hybrids. The relative maturity range of 100–110 obtained reasonable high grain yields and could be considered under the northwestern New Mexico climatic conditions. However, more research should target the evaluation of different planting date coupled with plant population density to determine the planting window for the early season and full season hybrids for the production optimization and sustainability.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1534
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Chandrakant Tiwari ◽  
Shalini Purwar ◽  
Mukul Kumar ◽  
...  

Drought stress is considered a severe threat to crop production. It adversely affects the morpho-physiological, biochemical and molecular functions of the plants, especially in short duration crops like mungbean. In the past few decades, significant progress has been made towards enhancing climate resilience in legumes through classical and next-generation breeding coupled with omics approaches. Various defence mechanisms have been reported as key players in crop adaptation to drought stress. Many researchers have identified potential donors, QTLs/genes and candidate genes associated to drought tolerance-related traits. However, cloning and exploitation of these loci/gene(s) in breeding programmes are still limited. To bridge the gap between theoretical research and practical breeding, we need to reveal the omics-assisted genetic variations associated with drought tolerance in mungbean to tackle this stress. Furthermore, the use of wild relatives in breeding programmes for drought tolerance is also limited and needs to be focused. Even after six years of decoding the whole genome sequence of mungbean, the genome-wide characterization and expression of various gene families and transcriptional factors are still lacking. Due to the complex nature of drought tolerance, it also requires integrating high throughput multi-omics approaches to increase breeding efficiency and genomic selection for rapid genetic gains to develop drought-tolerant mungbean cultivars. This review highlights the impact of drought stress on mungbean and mitigation strategies for breeding high-yielding drought-tolerant mungbean varieties through classical and modern omics technologies.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 550
Author(s):  
Panagiotis Kanatas ◽  
Ioannis Gazoulis ◽  
Ilias Travlos

Irrigation is an agronomic practice of major importance in alfalfa (Medicago sativa L), especially in the semiarid environments of Southern Europe. Field experimentation was conducted in Western Greece (2016–2018) to evaluate the effects of irrigation timing on weed presence, alfalfa yield performance, and forage quality. In a randomized complete block design (four replications), two cultivars (“Ypati 84” and “Hyliki”) were the main plots, while three irrigation timings were the subplots (split-plot). The irrigation timings were IT-1, IT-2, and IT-3, denoting irrigation 1 week before harvest, 1 week after harvest, and 2 weeks after harvest, respectively. IT-1 reduced Solanum nigrum L. density by 54% and 79% as compared to IT-3 and IT-2, respectively. Chenopodium album L. density was the highest under IT-2. IT-3 resulted in 41% lower Amaranthus retroflexus L. density in comparison to IT-2, while the lowest values were observed under IT-1. Stand density and stems·plant−1 varied between years (p ≤ 0.05). Mass·stem−1 and alfalfa forage yield were affected by the irrigation timings (p ≤ 0.001). Total weed density and forage yield were negatively correlated in both the second (R2 = 87.013%) and the fourth (R2 = 82.691%) harvests. IT-1 and IT-3 increased forage yield, leaf per stem ratio, and crude protein as compared to IT-2. Further research is required to utilize the use of cultural practices for weed management in perennial forages under different soil and climatic conditions.


Author(s):  
Padam Prasad Paudel ◽  
Dharma Raj Pokhrel ◽  
Sajan Koirala ◽  
Lalan Baitha ◽  
Dae Hyun Kim ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 144
Author(s):  
Dianxi Zhang ◽  
Muhammad Safdar Sial ◽  
Naveed Ahmad ◽  
António José Filipe ◽  
Phung Anh Thu ◽  
...  

Water scarcity is rising as a global issue, because the planet earth is facing a global water crisis, which is considered something that can destroy environmental sustainability of our planet. The fact is that humanity’s demand is depleting natural resources faster than nature can replenish itself; if human habits and unsustainable use of water resources do not change, water scarcity will inevitably intensify and become a major cause of conflict among different nations of the world. The water scarcity issue is a crucial issue but unfortunately it has not received due attention in past. Pakistan, which once was a water abundant country, now facing a situation of water scarcity. Pakistan has a poor irrigation system which results 60% loss of its water; Pakistan uses more water for crop production than other countries. Likewise, the country harvests water from rainfall, rivers, snow, and glaciers. The country is facing a serious water crisis that is caused by different factors, such as changing climatic conditions, rising population, poor irrigation system, poor political will, and rapid urbanization. The water crisis of Pakistan is expected to worsen in coming years. This is a drastic situation which calls for emergency measures. With this background, the present study provides a detailed view of the water situation in the country with challenges to water management. The study also suggests some recommendations for policymakers to improve the water crisis situation in the future.


Author(s):  
Rafail R. Mukhametzyanov ◽  
◽  
Nikolay G. Platonovskiy ◽  
Akhmed M. Khezhev ◽  
Tatiyana V. Ostapchuk ◽  
...  

In the context of the modern global financial world order, an important element of the stability of the national monetary unit of the overwhelming majority of countries in the world, especially developing countries, is foreign exchange earnings. For some countries with favorable natural and climatic conditions, the production, processing and export of agricultural products plays a significant role in the overall structure of foreign exchange earnings in the country. The constantly increasing demand from consumers for fruits, berries, nuts and their processed products allows economic entities of national fruit and berry subcomplexes to increase the volume of growing and exporting these types of products. This study analyzes the change in the volume of exports and imports of fruit and berry products in value terms for the period 2010-2019. It is revealed that some states, being the largest exporters of fruits, berries, nuts and products of their processing, occupy significant positions in the import of these types of products from abroad. Based on the author’s calculations, the top 30 countries of the world have been compiled in terms of net foreign exchange earnings from international trade in this type of product. According to this indicator, the first line with a level of $ 7.506 billion was occupied by Spain, while it increased it by $ 1.675 billion over 10 years. As for Russia, despite the counter-sanctions against the countries of the European Union and some other countries of the world, as well as the ongoing policy of import substitution, including in domestic gardening, it continues to be one of the main importers of fruits, berries, nuts and their processing products in the world. Thus, our country supports both foreign producers and other commercial structures that carry out the processes of commodity circulation of fruit and berry products, and the receipt of foreign exchange earnings in these powers.


2021 ◽  
Author(s):  
Lynette Morgan

Abstract Crop production in many regions has been reliant on irrigation for almost as long as man has been cultivating plant life. For 6000 years, irrigation has ranked among the most powerful tools of human advancement (Postel, 1999), and by the start of the 21st century no less than 75% of the world's fresh water was in use for agricultural production (Levy and Coleman, 2014). In 2012, twenty percent of total cultivated land was under irrigation, contributing forty percent of the total food production worldwide, this represented 275 million hectares under actual irrigation with a total of 324 million hectares equipped for irrigation (FAO, 2016). Irrigation, which can be defined as 'the artificial application of water to land, soil or other growing medium for the purposes of crop growth', has become a global issue in more recent times as the increasing demand for fresh water has seen problems develop with water scarcity, quality issues and conflict over usage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Cecilia Estravis-Barcala ◽  
Florencia Palottini ◽  
Walter M. Farina

AbstractThe increasing demand on pollination services leads food industry to consider new strategies for management of pollinators to improve their efficiency in agroecosystems. Recently, it was demonstrated that feeding beehives food scented with an odorant mixture mimicking the floral scent of a crop (sunflower mimic, SM) enhanced foraging activity and improved recruitment to the target inflorescences, which led to higher density of bees on the crop and significantly increased yields. Besides, the oral administration of nonsugar compounds (NSC) naturally found in nectars (caffeine and arginine) improved short and long-term olfactory memory retention in conditioned bees under laboratory conditions. To test the effect of offering of SM-scented food supplemented with NSC on honeybees pollinating sunflower for hybrid seed production, in a commercial plantation we fed colonies SM-scented food (control), and SM-scented food supplemented with either caffeine, arginine, or a mixture of both, in field realistic concentrations. Their foraging activity was assessed at the hive and on the crop up to 90 h after treatment, and sunflower yield was estimated prior to harvest. Our field results show that SM + Mix-treated colonies exhibited the highest incoming rates and densities on the crop. Additionally, overall seed mass was significantly higher by 20% on inflorescences close to these colonies than control colonies. Such results suggest that combined NSC potentiate olfactory learning of a mimic floral odor inside the hive, promoting faster colony-level foraging responses and increasing crop production.


Sign in / Sign up

Export Citation Format

Share Document