Magnetic Skyrmions in Thin Films

Author(s):  
Gong Chen
2019 ◽  
Vol 3 (10) ◽  
Author(s):  
Ryan D. Desautels ◽  
Lisa DeBeer-Schmitt ◽  
Sergio A. Montoya ◽  
Julie A. Borchers ◽  
Soong-Geun Je ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yoshinobu Nakatani ◽  
Keisuke Yamada ◽  
Atsufumi Hirohata

Abstract Magnetic Skyrmions are energetically stable entities formed in a ferromagnet with a diameter of typically below 100 nm and are easily displaceable using an electrical current of 102 A/cm2, resulting the Skyrmions to be more advantageous than domain walls for spintronic memory applications. Here, we demonstrated switching of a chirality of magnetic Skyrmions formed in magnetic thin films by introducing a pulsed heat spot using micromagnetic simulation. Skyrmions are found to expand with a pulsed heat spot, which induces the magnetic moments surrounding the Skyrmion to rotate by this expansion, followed by the chirality switching of the Skyrmion. Such simple controllability can be used as a fundamental building block for memory and logic devices using the chirality of Skyrmions as a data bit.


2021 ◽  
Author(s):  
Rajesh Kumar Rajagopal

Magnetic skyrmions are small whirling topological defects in a texture magnetization state. Their stabilization and dynamics depend strongly on their topological properties. Skyrmions are induced by non-centrosymmetric crystal structure of magnetic compounds and thin films. Skyrmions are extremely small, with diameters in the nanometer range, and behave as particles that can be created, moved and annihilated. This makes them suitable for information storage and logic technologies. Skyrmions had been observed only at low temperature, and mostly under large applied magnetic fields. An intense research in this field has led to the identification of skyrmions in thin-film and multilayer structures in these heterostrutres skyrmions are able to survive at room temperature and can be manipulated by electrical currents. Utilizing interlayer magnetic exchange bias with synthetic antiferromagnet with can be used to isolated antiferromagnetic skyrmions at room temperature. The development of skyrmion-based topological spintronics holds promise for applications in the writing, processing and reading functionalities at room temperature and can be extended further to all-electrical manipulation spintronics.


Author(s):  
L.J. Chen ◽  
Y.F. Hsieh

One measure of the maturity of a device technology is the ease and reliability of applying contact metallurgy. Compared to metal contact of silicon, the status of GaAs metallization is still at its primitive stage. With the advent of GaAs MESFET and integrated circuits, very stringent requirements were placed on their metal contacts. During the past few years, extensive researches have been conducted in the area of Au-Ge-Ni in order to lower contact resistances and improve uniformity. In this paper, we report the results of TEM study of interfacial reactions between Ni and GaAs as part of the attempt to understand the role of nickel in Au-Ge-Ni contact of GaAs.N-type, Si-doped, (001) oriented GaAs wafers, 15 mil in thickness, were grown by gradient-freeze method. Nickel thin films, 300Å in thickness, were e-gun deposited on GaAs wafers. The samples were then annealed in dry N2 in a 3-zone diffusion furnace at temperatures 200°C - 600°C for 5-180 minutes. Thin foils for TEM examinations were prepared by chemical polishing from the GaA.s side. TEM investigations were performed with JE0L- 100B and JE0L-200CX electron microscopes.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


Author(s):  
Klaus-Ruediger Peters ◽  
Samuel A. Green

High magnification imaging of macromolecules on metal coated biological specimens is limited only by wet preparation procedures since recently obtained instrumental resolution allows visualization of topographic structures as smal l as 1-2 nm. Details of such dimensions may be visualized if continuous metal films with a thickness of 2 nm or less are applied. Such thin films give sufficient contrast in TEM as well as in SEM (SE-I image mode). The requisite increase in electrical conductivity for SEM of biological specimens is achieved through the use of ligand mediated wet osmiuum impregnation of the specimen before critical point (CP) drying. A commonly used ligand is thiocarbohvdrazide (TCH), first introduced to TEM for en block staining of lipids and glvcomacromolecules with osmium black. Now TCH is also used for SEM. However, after ligand mediated osinification nonspecific osmium black precipitates were often found obscuring surface details with large diffuse aggregates or with dense particular deposits, 2-20 nm in size. Thus, only low magnification work was considered possible after TCH appl ication.


Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


Author(s):  
Dennis Maher ◽  
David Joy ◽  
Peggy Mochel

A variety of standard specimens is needed in order to systematically investigate the instrumentation, specimen, data reduction and quantitation variables in electron energy-loss spectroscopy (EELS). Pure single element specimens (e.g. various forms of carbon) have received considerable attention to date but certain elements of interest cannot be prepared directly as thin films. Since studies of the first and second row elements in two- or multicomponent systems will be of considerable importance in microanalysis using EELS, there is a need for convenient standards containing these species. For many investigations a standard should contain the desired element, or elements, homogeneously dispersed through a suitable matrix and at an accurately known concentration. These conditions may be met by the technique of implantation.Silicon was chosen as the host lattice since its principal ionization energies, EL23 = 98 eV and Ek = 1843 eV, are well removed from the K-edges of most elements of major interest such as boron (Ek = 188 eV), carbon (Ek = 283 eV), nitrogen (Ek = 400 eV) and oxygen (Ek = 532 eV).


Sign in / Sign up

Export Citation Format

Share Document