Definition of Mechanical Properties Assessed by Room Temperature Tensile Test for the Cu/Nb-Ti Composite Wires

1999 ◽  
pp. 1515-1518 ◽  
Author(s):  
Kozo Osamura ◽  
Arman Nyilas ◽  
Masao Shimada ◽  
Hidezumi Moriai ◽  
Msasaki Hojo ◽  
...  
2015 ◽  
Vol 1088 ◽  
pp. 221-226 ◽  
Author(s):  
Kai Wen ◽  
Wen Bo Du ◽  
Ke Liu ◽  
Zhao Hui Wang ◽  
Shu Bo Li

The Microstructure and mechanical properties of as-cast and as-extruded Mg-12Gd-2Er-1Zn-0.6Zr alloy are investigated in the present paper. The microstructure is analyzed by OM, SEM and TEM with SAED, and the mechanical properties are valued by the room temperature tensile test. The result shows that the coarse Mg5(Gd, Er, Zn) phase in the as-cast alloy was broken during hot extrusion process, and it was distributed at the grain boundary along the extrusion direction. The enhancement in mechanical properties of the extruded alloy is mainly ascribed to the refinement of these grains. The sizes of dynamical recrystallized grains are homogeneously, which was about 7 μm. Stacking fault existed in the as-cast alloy, which has a little effect on the dynamic recrystallization because of its tiny thicknesses.


2019 ◽  
Vol 31 (02) ◽  
pp. 2050027
Author(s):  
Lei Ma ◽  
Changsheng Li ◽  
Ailong Zhang ◽  
Wangyu Hu

The mechanical properties of irradiated iron are studied by molecular dynamics simulation. The initial models are irradiated with the energy of primary knocked-on atoms (PKA) of 10[Formula: see text]keV at 100, 300, 500 and 600 K, and then all the irradiated models are subjected to tensile test. The results reveal that the mechanical properties of irradiated iron are changed compared with un-irradiated iron, the yield stress and strain decrease after irradiation, and the irradiation causes the hardening of micro-structure at low temperature and high temperature, but it results in the softening of structure at room temperature. The plastic reduces for irradiated iron under tensile test, more stacking faults are formed in the crystal structure as the temperature increases.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 913 ◽  
Author(s):  
Lehang Ma ◽  
Jianguo Tang ◽  
Wenbin Tu ◽  
Lingying Ye ◽  
Haichun Jiang ◽  
...  

In this paper, the effect of trace Sn on the precipitation behavior and mechanical properties of Al–Mg–Si alloys with different Mg/Si ratios aged at 180 °C was investigated using hardness measurements, a room-temperature tensile test, transmission electron microscopy and differential scanning calorimetry. The results shown that Sn reduces the precipitation activation energy, increases the number density of β″ precipitates, and then increased the aging hardenability and mechanical properties of the Al–Mg–Si alloy. However, the positive effect of Sn on the mechanical properties of the Al–Mg–Si alloy drops with the decrease of the Mg/Si ratio of the alloy.


2007 ◽  
Vol 539-543 ◽  
pp. 1775-1779 ◽  
Author(s):  
Jeong Min Kim ◽  
Jae Min Lee ◽  
Joong Hwan Jun ◽  
Ki Tae Kim ◽  
Woon Jae Jung

A small amount of Zn or Sn was added to Mg-3%Al alloy to improve the formability of alloy. The elongation of as-rolled alloy was increased at both room temperature and 300oC by addition of Sn or Zn, even though the tensile strength at room temperature was remarkably increased only by Zn. When the as-rolled alloy was annealed to be fully recrystallized, the ductility at room temperature was significantly enhanced, however the elongation at 300oC was rather decreased probably attributed to the dynamic recrystallization occurred during the tensile test.


2007 ◽  
Vol 29-30 ◽  
pp. 87-90 ◽  
Author(s):  
Hyae Kyung Yi ◽  
Jung Hwan Lee ◽  
Young Seon Lee ◽  
Young Hoon Moon

Warm hydroformability and mechanical properties of pre- and post- heat treated Al6061 tubes were investigated in this study. For the investigation, as-extruded, fully annealed and T6- treated Al 6061 seamless tubes were prepared. To evaluate the hydroformability, uni-axial tensile test and free bulge test were performed at room temperature and 200ÓC. Also mechanical properties of hydroformed part at various pre- and post-heat treatments were evaluated by tensile test. The tensile test specimens were obtained from hexagonal shaped tube hydroformed at 200ÓC forming temperature. As a result, hydroformability of fully annealed tube is 25% higher than that of extruded tube. The tensile strength and elongation were more than 330MPa and 12%, respectively, when hydroformed part was T6 treated after warm hydroforming. However, hydroformed part using T6 pre treated tube represents low elongation, 8%. Therefore, the T6 treatment after hydroforming for as-extruded tube is proved to be the most cost-effective among various processing conditions.


2007 ◽  
Vol 546-549 ◽  
pp. 391-394
Author(s):  
Ding Fei Zhang ◽  
Li Ping Ren ◽  
Hong Ju Zhang ◽  
Wei Yuang

Developing new alloys and techniques is important for the applications of magnesium alloy products. The greatest challenge in the area is to exploit new wrought magnesium alloys[1]. In this paper, the effects of Zn addition on the microstructures and mechanical properties of the MZK60 wrought alloy which is modified from ZK60 have been investigated. The microstructures of these alloys at various states were evaluated by optical microscopy. The mechanical properties at room temperature of these alloys were studied systematically by tensile test. Experimental results indicated that increasing Zn content to 7~10%wt is able to get not only higher tensile strength and yield strength, but also higher elongation.


2019 ◽  
Vol 814 ◽  
pp. 268-274
Author(s):  
Mang Jiang ◽  
Rui Chun Guan ◽  
Jin Jun Xu

In the present work, the effects of pre-deformation before aging on the precipitation phase and mechanical properties of a new type X2A66 alloy was investigated with the help of the room temperature tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. The experimental research results prove that reducing the aging temperature or pre-deformation before aging is beneficial to improve the mechanical properties of the alloy. Compared with decreased aging temperature, pre-deformation treatment before aging can significantly improve the mechanical properties of the alloy, and its yield strength (YS), ultimate tensile strength (UTS) and elongation are 593.4Mpa, 610.8Mpa, and 10.7%, respectively.


Sign in / Sign up

Export Citation Format

Share Document