Optimization of Precipitation Phase Type and Mechanical Properties of X2A66 Alloy by Pre-Deformation Treatment

2019 ◽  
Vol 814 ◽  
pp. 268-274
Author(s):  
Mang Jiang ◽  
Rui Chun Guan ◽  
Jin Jun Xu

In the present work, the effects of pre-deformation before aging on the precipitation phase and mechanical properties of a new type X2A66 alloy was investigated with the help of the room temperature tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. The experimental research results prove that reducing the aging temperature or pre-deformation before aging is beneficial to improve the mechanical properties of the alloy. Compared with decreased aging temperature, pre-deformation treatment before aging can significantly improve the mechanical properties of the alloy, and its yield strength (YS), ultimate tensile strength (UTS) and elongation are 593.4Mpa, 610.8Mpa, and 10.7%, respectively.

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 913 ◽  
Author(s):  
Lehang Ma ◽  
Jianguo Tang ◽  
Wenbin Tu ◽  
Lingying Ye ◽  
Haichun Jiang ◽  
...  

In this paper, the effect of trace Sn on the precipitation behavior and mechanical properties of Al–Mg–Si alloys with different Mg/Si ratios aged at 180 °C was investigated using hardness measurements, a room-temperature tensile test, transmission electron microscopy and differential scanning calorimetry. The results shown that Sn reduces the precipitation activation energy, increases the number density of β″ precipitates, and then increased the aging hardenability and mechanical properties of the Al–Mg–Si alloy. However, the positive effect of Sn on the mechanical properties of the Al–Mg–Si alloy drops with the decrease of the Mg/Si ratio of the alloy.


2015 ◽  
Vol 816 ◽  
pp. 48-53
Author(s):  
Jing Zhang ◽  
Hua Shun Yu ◽  
Xin Ting Shuai ◽  
Hong Mei Chen ◽  
Guang Hui Min

Al2O3 particles reinforced ZL109 composites were prepared by in-situ reaction between Fe2O3+MnO2 and Al in this paper. The influence of ratio of Mn to Fe on the morphologies of Al-Si-Mn-Fe phase and mechanical properties of the composites was investigated. The microstructure was studied by electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM). The results show that the Al2O3 particles displaced by the Fe2O3+MnO2/Al system are in nanosize. The acicular Al-Si-Fe phases change from acicular to polygonal shape and become smaller with the increase manganese content. The hardness test results have no big difference on the composites. However, the ultimate tensile strength at room temperature and 350°C enhance evidently with the increasing of Mn/Fe.


2008 ◽  
Vol 584-586 ◽  
pp. 393-398 ◽  
Author(s):  
Nayar Lugo ◽  
Jose María Cabrera ◽  
Núria Llorca-Isern ◽  
C.J. Luis-Pérez ◽  
Rodrigo Luri ◽  
...  

Pure commercial Cu of 99,98 wt % purity was processed at room temperature by Equal- Channel Angular Pressing (ECAP) following route Bc. Heavy deformation was introduced in the samples after a considerable number of ECAP passes, namely 1, 4, 8, 12 and 16. A significant grain refinement was observed by transmission electron microscopy (TEM). Tensile and microhardness tests were also carried out on the deformed material in order to correlate microstructure and mechanical properties. Microhardness measurements displayed a quite homogeneous strain distribution. The most significative microstructural and mechanical changes were introduced in the first ECAP pass although a gradual increment in strength and a slight further grain refinement was noticed in the consecutive ECAP passes.


Author(s):  
MA Moazam ◽  
M Honarpisheh

It is well known that applying severe plastic deformation methods on the precipitation hardenable aluminum alloys at room temperature is very difficult because of crack formation and segmentation of the specimen during the processes. In this study, several procedures were experimentally examined for performing the cyclic close die forging (CCDF) and improving the mechanical properties of AA7075. The experimental tests revealed that supersaturated solid solution of AA7075 after water quenching is formable for only about 5 min and performing the CCDF process in this limited time is possible. Optical and scanning electron microscopy and transmission electron microscopy were used to study the microstructure of the processed samples. It was observed that by applying two passes of CCDF, the grain size of the material reduced from 30 µm to about 200–300 nm. In addition, the X-ray diffractometer results demonstrated that Guinier–Preston zone picks of the processed samples are very weak and the equilibrium η-phase does not exist in none of the suggested procedures. Furthermore, it was found that by combining CCDF and aging processes according to the proposed procedures, the mechanical properties of the processed AA7075 were improved when compared with the AA7075-T6. To put it more clearly, micro-hardness, yield strength and ultimate tensile stress of the processed sample were improved as much as 38.6%, 25% and 23%, respectively.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 198 ◽  
Author(s):  
Dongdong Zhang ◽  
Na Liu ◽  
Yuyong Chen ◽  
Guoqing Zhang ◽  
Jing Tian ◽  
...  

A novel strategy of microstructure design is introduced to improve the mechanical properties of TiAl alloys, fabricated by powder metallurgy. The gas atomization powder and as-HIPed (Hot isostatic pressing) TiAl are investigated by scanning electron microscopy, energy dispersive spectrometry, transmission electron microscopy, and electron backscattered diffraction. The dispersed submicron precipitate in the microstructure is determined to be Y2O3. A microstructure with uniform fine grain is obtained. The room temperature strength and strain reach 793 MPa and 1.5%, respectively. The strength and strain at 700 °C are still as high as 664 MPa and 9.2%, respectively. The fine grain and precipitate lead to a high room-temperature plasticity.


2005 ◽  
Vol 108-109 ◽  
pp. 709-712
Author(s):  
Stephanie Leclerc ◽  
Marie France Beaufort ◽  
Valerie Audurier ◽  
Alain Déclemy ◽  
Jean François Barbot

Single crystals SiC were implanted with 50 keV helium ions at room temperature and fluences in the range 1x1016 -1x1017 cm-2. The helium implantation induced swelling was studied through the measurement of the step height. The damage was studied by using X-ray diffraction measurements and the transmission electron microscopy observations. Degradation of mechanical properties is found after helium implantation.


2017 ◽  
Vol 62 (2) ◽  
pp. 1109-1112 ◽  
Author(s):  
H. Asgharzadeh ◽  
H.S. Kim

Abstract Al-3 vol% CNT nanocomposites were processed by high-pressure torsion (HPT) at room temperature under the pressure in the range of 2.5-10 GPa for up to 10 turns. Optical microscopy, scanning electron microscopy, and transmission electron microscopy (TEM) were used to investigate the microstructural evolutions upon HPT. Mechanical properties of the HPT-processed disks were studied using tensile tests and microhardness measurements. The results show gradual evolutions in the density, microstructure, and hardness with increasing the number of turns and applied presure. Nanostructured and elongated Al grains with an average grain thickness of ~40 nm perpendicular to the compression axis of HPT and an aspect ratio of ~3 are formed after 10 turns under 6 GPa. Evaluating the mechanical properties of the 10-turn processed Al/CNT nanocomposites indicates a tensile strength of 321 MPa and a hardness of 122 Hv. The tensile fracture surface of the Al/CNT nanocomposite mostly demonstrates a smooth fracture manner with fine dimples resulting in a low tensile ductility of ~1.5%.


e-Polymers ◽  
2014 ◽  
Vol 14 (4) ◽  
pp. 267-275 ◽  
Author(s):  
Rakesh Manna ◽  
Suryakanta Nayak ◽  
Mostafizur Rahaman ◽  
Dipak Khastgir

AbstractFlexible ethylene propylene diene monomer (EPDM)-titania nanocomposites of different compositions were prepared by room temperature mixing using both neat and annealed titania. All these composites showed composition-dependent dielectric and mechanical properties, and composites with controlled dielectric properties could be made through judicial adjustment of the composition. The effect of moisture/filler heat treatment was also studied and found that composites with annealed titania showed lower dielectric constant than composites with normal titania. There was a significant improvement in mechanical properties, where composites with 60 parts per hundred parts of titania gave the optimum tensile strength. The particle size of titania particles was analyzed by high-resolution transmission electron microscopy (HRTEM) and a dynamic light scattering technique. The morphology and dispersion of titania particles in the EPDM matrix were studied by field emission scanning electron microscopy and HRTEM. Finally, different dielectric models were compared with experimental data, and the best match was achieved by the Lichtenecker model, which can be used as a predictive rule for different volume contents of titania filler in the EPDM matrix.


2020 ◽  
Vol 326 ◽  
pp. 03003
Author(s):  
Guanxia Xue ◽  
Gu Zhong ◽  
Shipeng Lin ◽  
Hu-Tian Li ◽  
Xinghui Gui ◽  
...  

A new type of Al-Mg-Si-Cu aluminium alloy with high ductility was studied in the present work. The microstructure features and mechanical properties of this alloy were systematically characterized by scanning electron microscopy (SEM), electron back-scatter Diffraction (EBSD), high resolution transmission electron microscopy (HRTEM) and tensile and fatigue test. The percentage of sub-grain boundary under forging and aging process reaches up to 72% which can be attributed to the suppression of recrystallization by the nano-sized AlMnCrSi dispersoids. The combination of mechanical properties of the new alloy product in aged state showed that the ductility keeps in the range of 15~18%, yield strength and tensile strength are 310MPa and 380MPa respectively, fatigue strength ranges from 130MPa to 135MPa. It presents more excellent properties than commercial 6061 alloy for the nano-sized AlMnCrSi dispersoids, initial-β” precipitates and high percentage of sub-grain boundary.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Sign in / Sign up

Export Citation Format

Share Document