Breakdown Pressure Prediction in Hydraulic Fracturing at the Nigorikawa Geothermal Field

Author(s):  
Ko Sato ◽  
Morihiko Takanohashi ◽  
Kunio Katagiri
2013 ◽  
Vol 405-408 ◽  
pp. 3323-3327
Author(s):  
Feng Shen ◽  
Zhou Wu ◽  
Nan Wang ◽  
Yong Ming Li

The accurate prediction of wellhead pressure in process of hydraulic fracturing is a keypoint to guide the design and construction of the fracturing, and does help in choosing appropriate wellhead equipment and pipeline. This paper calculates the formation breakdown pressure by using a self-made formation stress calculation software, analyzes perforation friction and near-wellbore friction on the basis of Michael theory, eatablishes a model of wellbore friction through Darcy-Weisbach equation and the momentum interaction theory of two-phase flow, and according to the composition of wellhead pressure, makes calculation software which can also analyze the influencing factor of wellbore friction, such as delivery rate, pipe diameter, fracturing fluid density and proppant size. Finally, case analysis verifies the accuracy of the computing method.


2017 ◽  
Vol 863 ◽  
pp. 334-341
Author(s):  
Jun Hui Fu ◽  
Guang Cai Wen ◽  
Fu Jin Lin ◽  
Hai Tao Sun ◽  
Ri Fu Li ◽  
...  

Using elastic mechanics and fracture mechanics, analyzing the coal seam hydraulic fracturing breakdown pressure, given its theoretical formula. According to hydraulic fracturing stress status, given the form of two typical hydraulic fracture morphology. Analyzing hydraulic fracturing highly elliptical shape. The displacement field in plane stress state is given, and the theoretical formula of fracturing radius of hydraulic fracturing is deduced. The fracturing technology of underground fracturing is presented, and the fracturing location and fracturing parameters are determined. In Sihe Coal Mine conducted fracturing test, the test results showed that: the average of drainage volume of fracturing hole improved 4.4 times compared with non-pressed-hole. The extraction compliance time is reduced by 38%. Roadway tunneling speed was improved by 15%. It can solve the problem of gas overrun in roadway excavation well, and has a good application and popularization value.


Author(s):  
Li Zhuang ◽  
Kwang Yeom Kim ◽  
Sung Gyu Jung ◽  
Melvin Diaz ◽  
Ki-Bok Min ◽  
...  

2020 ◽  
Author(s):  
Maria Bobrova ◽  
Egor Filev ◽  
Anna Shevtsova ◽  
Sergey Stanchits ◽  
Vladimir Stukachev ◽  
...  

<p>Understanding the processes of Hydraulic Fracturing (HF) initiation and propagation in different types of rocks is important for the design and optimization of HF during the exploitation of underground resources. The main goals were to study the dynamics of the process of hydraulic fracture growth and possible optimization of HF technology for both homogeneous and heterogeneous rocks. Laboratory experiments on HF with different injection parameters were carried out on natural limestone, dolomite and shale specimens. The dynamics of HF process was monitored by Acoustic Emission (AE) technique, on the analogy of induced microseismicity monitoring of HF in the field conditions. The shape of created HF and the size of leak-off zone were analyzed by X-Ray CT scanning technique after the testing.</p><p>Experiments on dolomite were conducted using fluids with different viscosities (1000-10000 cP) injected into the rock with a rate of 0.5 ml/min. In case of low viscosity, we observed low AE activity. After the test, the sample was cut in several pieces transverse to the expected fracture plane. We have found that HF has initiated, but did not reach the sample boundaries and leak-off was significant. The ten times increase of fluid viscosity resulted in significantly increased AE activity, smaller size of leak-off zone and higher breakdown pressure (21.8 against 18.7 MPa). The post-test 3D shape of HF surface obtained by X-Ray CT closely correlates with 3D shape of localized AE events, confirming that the fracture propagated in the direction of maximal stress, as expected. It means that viscosity of fracturing fluid had a significant effect on fracturing breakdown pressure and fracture behavior.</p><p>The influence of different rock types on hydraulic fracturing was studied with dolomite, limestone and shale samples. In case of dolomite and shale, sufficient number of Acoustic Emission events were recorded, which allowed tracing the direction and dynamics of fracture propagation. However, for the limestone, a very small number of AE events were localized with the same parameters of injected fluid. Comparison of dolomite and shale HFs shows that the crack in the shale had a more complex shape, deviating from the maximal stress direction, which was explained by rock heterogeneity, by the presence of natural cracks and inclined planes of weakness. It led us to conclusion that the rock fabric plays an important role in the behavior of hydraulic fracture in heterogeneous rock.</p>


1981 ◽  
Vol 18 (2) ◽  
pp. 195-204 ◽  
Author(s):  
R. Heystee ◽  
J.-C. Roegiers

Recent laboratory hydraulic fracturing experiments have shown that fluid penetration into the rock mass adjacent to the borehole being pressurized has a significant influence on the magnitude of the breakdown pressure. One factor affecting the degree of penetration of the pressurizing fluid is the permeability of the rock mass, which in turn is a function of the state of stress present in the rock mass. To study this permeability–stress relationship, a radial permeameter was constructed and three rock types tested. Derived expressions show that during radially divergent and convergent flow in the permeameter, the state of stress in the rock specimen is tensile and compressive respectively. The radial permeameter test results show that the permeability of rock increases significantly under tensile stress conditions and reduces under compressive stress conditions. The results from this study were used to develop a conceptual model which explains the dependency of breakdown pressure levels on the pressurization rate.


1992 ◽  
Vol 29 (6) ◽  
pp. 902-917 ◽  
Author(s):  
Ashraf Hefny ◽  
K. Y. Lo

For the design of underground structures in rocks, the states of initial stresses in the rock mass are required. For structures located at great depths, the hydraulic fracturing test for stress measurements is the only practical method. For vertical fractures, existing solutions for calculation of stresses from test results are satisfactory. For horizontal or mixed-mode fractures, appropriate solutions are required. Closed-form solutions for horizontal and mixed-mode fractures including strength anisotrophy are presented. The method enables the determination of which fracture (horizontal or vertical) occurs first at the first breakdown pressure during the test, so appropriate stress calculation may be carried out. Results of hydraulic fracturing tests in three case histories have been reanalyzed using the method developed. It is shown that for horizontal fractures the ranges of stress values computed are considerably reduced compared with existing solutions. The reinterpreted horizontal stresses in a case record are consistent with results of field observations in underground excavations. Experimental requirements for the measurements of rock parameters relevant to the specific stress paths in hydraulic fracturing tests are discussed. Key words : hydraulic fracturing, stress measurements, mixed-mode fractures, underground structures, rock strength.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Desheng Zhou ◽  
Haiyang Wang ◽  
Yafei Liu ◽  
Shun Liu ◽  
Xianlin Ma ◽  
...  

As a fluid flows through a porous media, a drag force, called seepage force in the paper, will be formed on the matrix of the media in the fluid flowing direction. However, the seepage force is normally ignored in the analysis of wellbore fracturing during hydraulic fracturing operation. In this paper, an analytical model for seepage force around a vertical wellbore is presented based on linear elasticity theory, and the effect of the seepage force on wellbore breakdown has been analyzed. Also studied are the effects of the two horizontal principal stresses and the reservoir permeability on the action of seepage force. The paper proves that seepage force lowers formation breakdown pressure of a vertical wellbores; the deeper a formation is, the greater action of the seepage force; seepage force contributes more to breakdown formation with small difference of the two horizontal stresses such as unconventional reservoirs; seepage force increases as rock permeability decreases, and it should not be ignored in hydraulic fracturing analysis, especially for low-permeability formation.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Zeeshan Tariq ◽  
Mohamed Mahmoud ◽  
Abdulazeez Abdulraheem ◽  
Dhafer Al-Shehri ◽  
Mobeen Murtaza

Abstract Unconventional hydrocarbon resources mostly found in highly stressed, overpressured, and deep formations, where the rock strength and integrity are very high. When fracturing these kinds of rocks, the hydraulic fracturing operation becomes much more challenging and difficult and in some cases reaches to the maximum pumping capacity limits without generating any fracture. This reduces the operational gap to optimally place the hydraulic fractures. Current stimulation methods to reduce the fracture pressures involvement with adverse environmental effects and high costs due to the entailment of water mixed with huge volumes of chemicals. In this study, a new environment friendly approach to reduce the breakdown pressure of the unconventional rock is presented. The new method incorporates the injection of chemical-free fracturing fluid in a series of cycles with a progressive increase of the pressurization rate in each cycle. This study is carried out on different cement blocks with varying petrophysical and mechanical properties to simulate real rock types. The results showed that the new method of cyclic fracturing can reduce the breakdown pressure to 24.6% in ultra-tight rocks, 19% in tight rocks, and 14.8% in medium- to low-permeability rocks. This reduction in breakdown pressure helped to overcome the operational challenges in the field and makes the fracturing operation much greener.


Sign in / Sign up

Export Citation Format

Share Document