Effect of Solutionizing Time on Age Hardening Characteristics and Corrosive Wear Behavior of Age Hardenable Al Alloy Composites

Author(s):  
S. K. Varma
2006 ◽  
Vol 128 (4) ◽  
pp. 891-894 ◽  
Author(s):  
M. Abdel Aziz ◽  
T. S. Mahmoud ◽  
Z. I. Zaki ◽  
A. M. Gaafer

In this article, the heat treatment and dry sliding wear behavior of Al-based AA6063 alloy reinforced with both TiC and Al2O3 ceramic particles were studied. The particles were synthesized by self-propagating high temperature synthesis (SHS) technique. The prepared composite alloy contains 5vol.%Al2O3 and 5vol.% TiC particles. The composite alloy was prepared by vortex method. To attain the peak hardness values of the alloys, age hardening behavior of the monolithic alloy and also the composite alloy was investigated. The wear tests were performed at room temperature using a pin-on-disk type apparatus. The results showed that the addition of TiC and Al2O3 particles increases the hardness of the AA6063 Al alloy and at the same time accelerates the aging kinetics. The sliding wear properties of AA6063 Al alloy were significantly improved by the addition of TiC and Al2O3 particles.


2018 ◽  
Vol 736 ◽  
pp. 53-60 ◽  
Author(s):  
Danielle Cristina Camilo Magalhães ◽  
Andrea Madeira Kliauga ◽  
Maurizio Ferrante ◽  
Vitor Luiz Sordi

2021 ◽  
Vol 1039 ◽  
pp. 201-208
Author(s):  
Ruaa A. Salman ◽  
Naser K. Zedin

This research is devoted to study the effect of addition (2%) TiO2 with different weight percent of fly ash particulate (0, 2, 4, 6%) to 2024 Al alloy on the wear behavior and hardness. The alloy was fabricated by the liquid metallurgy method. The results founds that the wear rate decreased from 0.55 with 0% fly ash to 0.18 at addition percentage of 6% fly ash. Also, the results reveal increasing the samples wear rate with increasing the load and loaded time. The rate of wear was decreased with increasing the sliding speed. Also, the values of hardness increased from 120VH to 160VH with rising the fly ash from 0% to 6%. Keywords: Fly Ash addition, TiO2, 2024 Al Alloy, Wear Resistance, Hardness.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Vineet Tirth

AA2218–Al2O3(TiO2) composites are synthesized by stirring 2, 5, and 7 wt % of 1:2 mixture of Al2O3:TiO2 powders in molten AA2218 alloy. T61 heat-treated composites characterized for microstructure and hardness. Dry sliding wear tests conducted on pin-on-disk setup at available loads 4.91–13.24 N, sliding speed of 1.26 m/s up to sliding distance of 3770 m. Stir cast AA2218 alloy (unreinforced, 0 wt % composite) wears quickly by adhesion, following Archard's law. Aged alloy exhibits lesser wear rate than unaged (solutionized). Mathematical relationship between wear rate and load proposed for solutionized and peak aged alloy. Volume loss in wear increases linearly with sliding distance but drops with the increase in particle wt % at a given load, attributed to the increase in hardness due to matrix reinforcement. Minimum wear rate is recorded in 5 wt % composite due to increased particles retention, lesser porosity, and uniform particle distribution. In composites, wear phenomenon is complex, combination of adhesive and abrasive wear which includes the effect of shear rate, due to sliding action in composite, and abrasive effect (three body wear) of particles. General mathematical relationship for wear rate of T61 aged composite as a function of particle wt % load is suggested. Fe content on worn surface increases with the increase in particle content and counterface temperature increases with the increase in load. Coefficient of friction decreases with particle addition but increases in 7 wt % composite due to change in microstructure.


Author(s):  
Chihaya Kawamoto ◽  
Kenji Matsuda ◽  
Satoshi Murakami ◽  
Daisuke Tokai ◽  
Tokimasa Kawabata ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2316
Author(s):  
Feijoo ◽  
Cabeza ◽  
Merino ◽  
Pena ◽  
Rey

Pre-alloyed micron-sized 6005A Al alloy (AA 6005A) powders, with a Mg/Si atomic ratio of 0.75, obtained by high pressure inert gas atomization were consolidated by uniaxial cold pressing at 200 MPa into cylindrical Al containers and hot extruded at 450, 480 and 500 °C with an extrusion rate of 7:1, followed by artificial T6 precipitation hardening. Ageing conditions were varied between 170 °C and 190 °C and times of 6, 7 and 8 hours. The microstructure of the extruded profiles was analysed using X-Ray diffractometry (XRD), light optical microscopy (LOM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) was used to study the possible phase transformations. After our results, the peak-aging hardness condition was achieved at 180 °C for 6 h. Mechanical properties of the powder metallurgy (P/M) aluminium alloys consolidated by hot extrusion were superior to those of the extruded profiles of wrought alloy using conventional ingot metallurgy (I/M) billets. AA 6005A wrought P/M alloy via T6 heat treatment shown yield stress of 317 MPa and elongation of 21% at the extrusion pre-heating temperature of 500 °C.


2013 ◽  
Vol 380-384 ◽  
pp. 8-11
Author(s):  
Jian Hua Fang ◽  
Bo Shui Chen ◽  
Jiu Wang ◽  
Jiang Wu

A type of new environmentally friendly lube additive---boron-nitrogen modified soybean oil was synthesized and characterized by infrared spectrum. Its effect on the friction and wear behavior of steel-steel and steel-aluminum alloy systems were investigated with a four-ball machine and an Optimol SRV friction and wear tester respectively. The morphographies of the worn surfaces were analyzed by means of scanning electron microscopy (SEM).The worn surfaces of the 2024Al alloy block were analyzed by means of X-ray photoelectron spectroscopy (XPS).The results show that the type of modified soybean oil as additives can obviously decrease the wear rate and friction coefficient of steel pair and steel-aluminum frictional pair. Its lubrication mechanism is inferred that a high strength adsorption film and/or tribochemistry reaction film on the worn surface of the Al alloy due the carrier effect of a long chain soybean oil, high reaction activities of nitrogen, electron-deficient of boron and their synergisms.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Anil K. Chaturvedi ◽  
K. Chandra ◽  
P. S. Mishra

In this study, dry sliding wear behavior of Al alloy (Al 2219) based metal matrix friction composites (AlMMFCs) incorporated with varying percentage of ingredients: silicon carbide particles (15–25 wt %SiCp) and solid lubricants with 4 wt % graphite and 1 wt % antimony trisulphide (Sb2S3) were investigated. A group of four new chemical formulations, three binary composites of Al/SiCp (Al01N, Al02N, and Al03N), and a hybrid composite of Al/SiCp/solid lubricants (Al04N) were fabricated by newly a developed “cold-hot powder die compaction” method. Physical and mechanical properties were measured as usual. To measure tribological properties, dry pin-on-disk wear tests were conducted for 1 hour at varying loads of 1 MPa and 2 MPa and at sliding speeds of 3 m/s, 5 m/s, 7 m/s, and 9 m/s. The results revealed that the incorporation of SiCp from 15 wt % to 25 wt % in binary composite, density (2.8–2.9 g/cc), apparent porosity (1.4–3.4 vol %), and hardness (78–93 BHN) were increased. For hybrid composite, density (2.9–2.76 g/cc) and hardness (93–81 BHN) were decreased with the increase in apparent porosity (3.4–4.1 vol %). It was concluded that the obtained density is higher than the reported density and the obtained apparent porosity is much lower than the reported apparent porosity by Aigbodi et al. (2007, “Effects of Silicon Carbide Reinforcement on Microstructure and Properties of Cast Al–Si–Fe/Sic Particulate Composites,” Mater. Sci. Eng., A, 447, pp. 355–360) for same composition using “double stir casting” method. The value of coefficient of friction with addition of solid lubricants increased and steady at high load and speed (2 MPa, >5 m/s).The microstructures, worn surfaces, and tribolayers are also analyzed by an optical microscope and SEM. This study overviews AlMMFCs incorporated with hard particles and solid lubricants and the new technology for producing brake lining parts from these novel materials.


2020 ◽  
Vol 15 (55) ◽  
pp. 20-31
Author(s):  
M. Ravikumar ◽  
H.N. Reddappa ◽  
R. Suresh ◽  
M. Sreenivasa Reddy

The effects of SiC-Al2O3 particle in the Al alloy on the mechanical and wear characteristics of stir-casted Composites have been reported. The Al7075 is reinforced with 2, 4, 6 and 8 wt. % of (SiC + Al2O3) to manufacture the hybrid composite. Ceramic particulates were added into Al alloy to achieve the low wear rate and improving mechanical properties. Hardening of casted specimens at 480ºC for the duration of 2 hrs and the specimens were quenched into two different quenching media (water and ice cubes). Finally, age-hardening were carried out at the temperature of 160ºC for the duration of 4 hrs and cooled at room temperature. The tensile strength, hardness and wear behaviour of MMCs are evaluated on the un-treated and heat treated composite. The tensile strength and hardness of MMCs increases by incorporating SiC-Al2O3 particulates. The wear behaviour of the MMCs containing SiC-Al2O3 particulates revealed the high wear-resistance. The heat-treatment had considerably improved the properties when compared to the un-heat treated composites. The composites with the highest tensile strength, hardness and enhanced wear resistance were found in the composites quenched in ice cubes. Worned surfaces of the composite specimens were studied by using SEM and XRD analysis


Sign in / Sign up

Export Citation Format

Share Document