Mechanism of Rectified Output Voltage Spike in Isolated Converter Under Wide Input Voltage

Author(s):  
Chunhui Miao ◽  
Huiqing Du ◽  
Fei Xiao
2019 ◽  
Vol 28 (03) ◽  
pp. 1950043 ◽  
Author(s):  
M. Jahangiri ◽  
A. Farrokhi

A fast transient capacitor-less low-dropout regulator is presented in this study. The proposed LDO structure is based on Output Voltage Spike Reduction (OVSR) circuits and capacitance compensation circuits to enable a fast-transient response with ultra-low power dissipation and to make the LDO stable for a wide range of output load currents (0–50[Formula: see text]mA). The slew rate is improved with more slew current from the OVSR circuit and unity gain bandwidth is improved by a capacitor multiplayer circuit. The proposed LDO has been simulated with a standard 0.18[Formula: see text][Formula: see text]m CMOS process. The output voltage of the LDO was set to 1.2[Formula: see text]V for an input voltage of 1.4–2[Formula: see text]V. The Simulation results verify that the transient times are less than 2.8[Formula: see text][Formula: see text]s and the maximum undershoot and overshoot are 20[Formula: see text]mV while consuming only 26[Formula: see text][Formula: see text]A quiescent current. The proposed LDO is stable with an on-chip capacitor at the output node within the wide range of 1100[Formula: see text]PF.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1623
Author(s):  
Bor-Ren Lin

In order to realize emission-free solutions and clean transportation alternatives, this paper presents a new DC converter with pulse frequency control for a battery charger in electric vehicles (EVs) or light electric vehicles (LEVs). The circuit configuration includes a resonant tank on the high-voltage side and two variable winding sets on the output side to achieve wide output voltage operation for a universal LEV battery charger. The input terminal of the presented converter is a from DC microgrid with voltage levels of 380, 760, or 1500 V for house, industry plant, or DC transportation vehicle demands, respectively. To reduce voltage stresses on active devices, a cascade circuit structure with less voltage rating on power semiconductors is used on the primary side. Two resonant capacitors were selected on the resonant tank, not only to achieve the two input voltage balance problem but also to realize the resonant operation to control load voltage. By using the variable switching frequency approach to regulate load voltage, active switches are turned on with soft switching operation to improve converter efficiency. In order to achieve wide output voltage capability for universal battery charger demands such as scooters, electric motorbikes, Li-ion e-trikes, golf carts, luxury golf cars, and quad applications, two variable winding sets were selected to have a wide voltage output (50~160 V). Finally, experiments with a 1 kW rated prototype were demonstrated to validate the performance and benefits of presented converter.


2017 ◽  
Vol 26 (12) ◽  
pp. 1750196 ◽  
Author(s):  
Yanzhao Ma ◽  
Yinghui Zou ◽  
Shengbing Zhang ◽  
Xiaoya Fan

A fully-integrated self-startup circuit with ultra-low voltage for thermal energy harvesting is presented in this paper. The converter is composed of an enhanced swing LC oscillator and a charge pump with decreased equivalent input capacitance. The LC oscillator has ultra-low input voltage and high output voltage swing, and the charge pump has a fast charging speed and small equivalent input capacitance. This circuit is designed with 0.18[Formula: see text][Formula: see text]m standard CMOS process. The simulation results show that the output voltage is in the range of 0.14[Formula: see text]V and 2.97[Formula: see text]V when the input voltage is changed from 50[Formula: see text]mV to 150[Formula: see text]mV. The output voltage could reach 2.87[Formula: see text]V at the input voltage of 150[Formula: see text]mV and the load of 1[Formula: see text]M[Formula: see text]. The maximum efficiency is in the range of 10.0% and 14.8% when the input voltage is changed from 0.2[Formula: see text]V to 0.4[Formula: see text]V. The circuit is suitable for thermoelectric energy harvesting to start with ultra-low input voltage.


2013 ◽  
Vol 479-480 ◽  
pp. 535-539
Author(s):  
Van Tsai Liu ◽  
Chien Hao Hsu

In this paper, a novel high step-up DC-DC converter has been designed for fuel cell applications. The proposed high step-up converter can be used for various portable energy storage components such as fuel cells which are used for hybrid electric vehicles (HEV), and light electric vehicles (LEV).The proposed converter is integrated by boost circuit, voltage lift capacitor, and coupled-inductor techniques to achieve high step-up voltage and has several advantages. First, the circuit is controlled by one single pulse width modulation (PWM). Second, the converter consists of active clamp circuit to recycle the leakage inductance and send to output capacitor so that the voltage spike on active switch is suppressed and efficiency is also improved. Third, by using the winding of secondary boost circuit, and voltage lift capacitor techniques, the high voltage gain can be achieved without more than 50% duty ratio, and the slope compensation circuit can also be simplified.Finally, a 1k W prototype converter is implemented, to verify the performance of the proposed converter with input voltage 48V, output voltage 400V, and output power 1k W is also achieved. The highest efficiency is 92.96% at 400W, and the full-load efficiency is up to 90.48%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jagabar Sathik M. ◽  
Dhafer J. Almakhles

AbstractDeveloping of new photovoltaic inverter topologies is received more attention in the last few years. In particular, designing an active neutral-point-clamping inverter type structure is quite popular for PV applications. The output voltage is always half of the input voltage (vin), which further increases the voltage rating of dc-link capacitors in the conventional three-level ANPC. To rectify the above problem and increase the output voltage by reducing dc-link capacitors voltage rating, a new boost type seven-level ANPC inverter topology is proposed. The proposed topology consists of seven switches and one floating capacitor. The floating capacitor voltage is self-balanced, and the output voltage is 1.5 times higher than the input voltage. A detailed comparison for some power components, power loss and cost with other existing topologies are presented. Further, the proposed topology is validated in a prototype hardware setup for different load values.


Author(s):  
Mamidala Hemanth Reddy

The output voltage from the sustainable energy like photovoltaic (PV) arrays and fuel cells will be at less amount of level. This must be boost considerably for practical utilization or grid connection. A conventional boost converter will provides low voltage gain while Quadratic boost converter (QBC) provides high voltage gain. QBC is able to regulate the output voltage and the choice of second inductor can give its current as positive and whereas for boost increases in the voltage will not able to regulate the output voltage. It has low semiconductor device voltage stress and switch usage factor is high. Analysis and design modeling of Quadratic boost converter is proposed in this paper. A power with 50 W is developed with 18 V input voltage and yield 70 V output voltage and the outcomes are approved through recreation utilizing MATLAB/SIMULINK MODEL.


Author(s):  
Suwarno Suwarno ◽  
Tole Sutikno

<p>This paper presents the implementation of the buck-boost converter design which is a power electronics applications that can stabilize voltage, even though the input voltage changes. Regulator to stabilize the voltage using PWM pulse that triger pin 2 on XL6009. In this design of buck-boost converter is implemented using the XL6009, LM7815 and TIP2955. LM7815 as output voltage regulator at 15V with 1A output current, while TIP2955 is able to overcome output current up to 5A. When the LM7815 and TIP2955 are connected in parallel, the converter can increase the output current to 6A.. Testing is done using varied voltage sources that can be set. The results obtained from this design can be applied to PV (Photovoltaic) and WP (Wind Power), with changes in input voltage between 3-21V dc can produce output voltage 15V.</p>


Author(s):  
Waleed Ishaq Hameed ◽  
Baha Aldeen Sawadi ◽  
Ali Muayed

<span lang="EN-US">This paper deals with voltage tracking control of DC- DC boost converter based on Fuzzy neural network. Maintaining the output voltage of the boost converter in some applications are very important, especially for sudden change in the load or disturbance in the input voltage. Traditional control methods usually have some disadvantages in eliminating these disturbances, as the speed of response to these changes is slow and thus affect the regularity of the output voltage of the converter. The strategy is to sense the output voltage across the load and compare it with the reference voltage to ensure that it follows the required reference voltages. In this research, fuzzy neural was introduced to achieve the purpose of voltage tracking by training the parameter of controller based on previous data. These data sets are the sensing input voltage of the converter and the value of the output load changes. To establish the performance of proposed method, MATLAB/SIMULINK environments are presented, simulation results shows that proposed method works more precisely, faster in response and elimination the disturbances</span>


DC-DC converters are playing an important role in designing of Electric Vehicles, integration of solar cells and other DC applications. Contemporary high power applications use multilevel converters that have multi stage outputs for integrating low voltage sources. Conventional DC-DC converters use single source and have complex structure while using for Hybrid Energy Systems. This paper proposes a multi-input, multi-output DC-DC converter to produce constant output voltage at different input voltage conditions. This topology is best suitable for hybrid power systems where the output voltage is variable due to environmental conditions. It reduces the requirement of magnetic components in the circuit and also reduces the switching losses. The proposed topology has two parts namely multi-input boost converter and level-balancing circuit. Boost converter increases the input voltage and Level Balancing Circuit produce Multi output. Equal values of capacitors are used in Level Balancing Circuit to ensure the constant output voltage at all output stages. The operating modes of each part are given and the design parameters of each part are calculated. Performance of the proposed topology is verified using MATLAB/Simulink simulation which shows the correctness of the analytical approach. Hardware is also presented to evaluate the simulation results.


Sign in / Sign up

Export Citation Format

Share Document