Mathematical Model for Pressure–Deformation Relationship of Miniaturized McKibben Actuators

Author(s):  
K. P. Ashwin ◽  
Ashitava Ghosal
2012 ◽  
Vol 155-156 ◽  
pp. 726-730
Author(s):  
Zhong Hua Li ◽  
Qian Tang ◽  
Di Yan ◽  
Jie Wu

The common methods of cam induction hardening are discussed at present. By analyzing the basic motion law of conjugate cam, a new induction hardening mechanism is designed. The motion controlling mathematical model is built on the basis of the kinematic relationship of the transmission of the induction hardening mechanism. Through the mathematical model calculation, we can get angular velocity of the workbench, then realize that single axis on NC machine controls the inductor to make isometric uniform motion relative to the cam surface, so that the cam hardening depth distribution is uniform.


2020 ◽  
Vol 9 (9) ◽  
pp. e891998013
Author(s):  
Mônica Calixto Ribeiro de Holanda ◽  
Marco Aurélio Carneiro de Holanda ◽  
Leandro Ricardo Rodrigues de Lucena

Objective was to define a mathematical model that better explain the relationship of the animals weight depending not only on the animals age but also on the animals morphometric measurements. 40 piglets, half Duroc-Large White blood, were used, 20 males and 20 females, from 3 to 35 days of age (lactation phase) initially weighing 1.518 ± 0.121 kg and from 36 to 66 days of age (calving phase) with a body weight of 7.010 ± 0.704 kg. The animals were weighed weekly on a digital balance. The relationship of animal weight, age and morphometric measurements of male and female piglets were performed using regression models: existing, linear and power. The models were evaluated according to nine criterialinear model was the most adequate to explain the weight of male pigs, while for female pigs was the power. The age of the pig, the shank and palette length, as well as the circumference of the shank jointly explain the weight of the male piglets. The weight of females is explained jointly by age, body length, thorax and hip circumference.


2013 ◽  
Vol 419 ◽  
pp. 203-208
Author(s):  
Ying Yu ◽  
Yao Run Peng ◽  
Shi Xin Lan ◽  
Ping Zhou

Wave spring is a key component of multi-disc wet clutch and the response speed and running quality of multi-disc wet clutch is affected by its characteristics. This paper analyses the theoretical calculation of load-deformation relationship of wave spring. The load-deformation relationship of wave spring is obtained by ANSYS10.0 software according to its structural characteristics and actual boundary condition and compared with the calculated results based on different methods and the measured value, and then study the effect of the wave number on the load-deformation relationship of wave spring. The results show that the calculated value of finite element analysis (FEM) is closer to the measured value and the FEM has more advantages on simulation of the working performance of wave spring.


2010 ◽  
Vol 455 ◽  
pp. 1-5
Author(s):  
L.Z. Song ◽  
S.L. Guo ◽  
Chun Jiang Xiang ◽  
Qi Hong

From the viewpoint of the forming principle of spiral curve and classification from the kinematics, established relatively unified mathematical model of spiral curve based on the movement characteristics of particle and the forming principle of space surface shape, and in turn relying on relatively unified mathematical model of spiral curve, combined the similarity of forming movement between spiral curve and spiral surface, derived the relatively unified mathematical model of spiral surface with the concept of sequence of operator presented for the first time. The relatively unified mathematical model has been validated that it not only expressed the relationship of movement synthesis for commonly spiral surface’s forming movement, but also depicted new spiral surface to be required or named through changing parameters.


1974 ◽  
Vol 96 (4) ◽  
pp. 460-465 ◽  
Author(s):  
E. D. Ward ◽  
R. G. Leonard

One of the most important components in simulating track-train dynamics is the mathematical model of the connection between two cars, the draft gear-coupler combination. In this paper an automatic parameter identification technique is presented which can be used to generate a nonlinear functional relationship of dynamic draft gear characteristics using experimental data.


2012 ◽  
Vol 490-495 ◽  
pp. 1441-1445 ◽  
Author(s):  
Jian Zhuo Zhang ◽  
Li Zhe Guan ◽  
Kang Kang Li

A kind of hydraulic exciter based on rotary valve control was studied in this paper, the composition of the exciter and its working principle were introduced, and the mathematical model of the system was established. The characters of the system were simulated using MATLAB. From the results of the simulation, we get the relationship of the amplitude of Vibration oil cylinder between the system’s pressure and the exciting frequency. The results can provide theoretical bases to design the hydraulic exciter.


2011 ◽  
Vol 128-129 ◽  
pp. 1010-1014
Author(s):  
Rui Wu ◽  
Dan Wen Zhang ◽  
Juan Sun

The twiste angle has a great effect on shaping law and stability of Numerical Controlled Electrochemical Machining (NC-ECM) process. In order to avoid the disadvantages caused by twiste angle, a methode of study shaping law by dispersing cathode working face in NC-ECM was proposed, and a mathematical model of the shaping law with the effects of twiste angle has been established in this paper. The mathematical model disclosed the relationship of twiste angle β, feeding velocity vf and thickness of removal material h in NC-ECM. Theoretical and experimental results show the the mathematical model of shaping law described in this paper can be considered as a useful reference and is helpful for the analysis of the NC-ECM and general ECM process.


2012 ◽  
Vol 476-478 ◽  
pp. 2463-2468 ◽  
Author(s):  
Ji Cheng Zhang ◽  
Jun Yang

In this paper, a constitutive relationship of the concrete core restrained by L-Shaped steel tube is put forward based on referring to the constitutive relations of core concrete in concrete-filled square steel tube columns, which takes the restraint of steel tube to concrete as an equivalent confinable effect coefficient . Load-deformation relationship of L-Shaped concrete-filled steel tubular column subjected to axial compression is analyzed by finite element analysis (using ABAQUS software). The predicted load versus deformation relationship cures are in good agreement with those of tests based on the finite element analysis, loads carried by steel tubes and concrete respectively during the loading process, as well as interactions between them are analyzed. Finally, influences of length-width ratio and width-thickness ratio on the interaction between steel tubes and concrete are investigated.


Sign in / Sign up

Export Citation Format

Share Document