Study of Squeeze Film in a Ferrofluid Lubricated Longitudinally Rough Rotating Plates

Author(s):  
Hardik P. Patel ◽  
G. M. Deheri ◽  
R. M. Patel
Keyword(s):  
2020 ◽  
Vol 21 (6) ◽  
pp. 619
Author(s):  
Kostandin Gjika ◽  
Antoine Costeux ◽  
Gerry LaRue ◽  
John Wilson

Today's modern internal combustion engines are increasingly focused on downsizing, high fuel efficiency and low emissions, which requires appropriate design and technology of turbocharger bearing systems. Automotive turbochargers operate faster and with strong engine excitation; vibration management is becoming a challenge and manufacturers are increasingly focusing on the design of low vibration and high-performance balancing technology. This paper discusses the synchronous vibration management of the ball bearing cartridge turbocharger on high-speed balancer and it is a continuation of papers [1–3]. In a first step, the synchronous rotordynamics behavior is identified. A prediction code is developed to calculate the static and dynamic performance of “ball bearing cartridge-squeeze film damper”. The dynamic behavior of balls is modeled by a spring with stiffness calculated from Tedric Harris formulas and the damping is considered null. The squeeze film damper model is derived from the Osborne Reynolds equation for incompressible and synchronous fluid loading; the stiffness and damping coefficients are calculated assuming that the bearing is infinitely short, and the oil film pressure is modeled as a cavitated π film model. The stiffness and damping coefficients are integrated on a rotordynamics code and the bearing loads are calculated by converging with the bearing eccentricity ratio. In a second step, a finite element structural dynamics model is built for the system “turbocharger housing-high speed balancer fixture” and validated by experimental frequency response functions. In the last step, the rotating dynamic bearing loads on the squeeze film damper are coupled with transfer functions and the vibration on the housings is predicted. The vibration response under single and multi-plane unbalances correlates very well with test data from turbocharger unbalance masters. The prediction model allows a thorough understanding of ball bearing turbocharger vibration on a high speed balancer, thus optimizing the dynamic behavior of the “turbocharger-high speed balancer” structural system for better rotordynamics performance identification and selection of the appropriate balancing process at the development stage of the turbocharger.


2018 ◽  
Vol 180 ◽  
pp. 02091
Author(s):  
Dominik Šedivý ◽  
Petr Ferfecki ◽  
Simona Fialová

This article presents the evaluation of force effects on squeeze film damper rotor. The rotor is placed eccentrically and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were measured by using computational modeling. Damper was filled with magnetorheological fluid. Viscosity of this non-Newtonian fluid is given using Bingham rheology model. Yield stress is not constant and it is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width between rotor and stator. The simulations were made in finite volume method based solver. The motion of the inner ring of squeeze film damper was carried out by dynamic mesh. Numerical solution was solved for five different initial eccentricities and angular velocities of rotor motion.


Author(s):  
Manimegalai Kavarthalai ◽  
Vimala Ponnuswamy

A theoretical study of a squeezing ferro-nanofluid flow including thermal effects is carried out with application to bearings and articular cartilages. A representational geometry of the thin layer of a ferro-nanofluid squeezed between a flat rigid disk and a thin porous bed is considered. The flow behaviours and heat transfer in the fluid and porous regions are investigated. The mathematical problem is formulated based on the Neuringer–Rosensweig model for ferro-nanofluids in the fluid region including an external magnetic field, Darcy law for the porous region and Beavers–Joseph slip condition at the fluid–porous interface. The expressions for velocity, fluid film thickness, contact time, fluid flux, streamlines, pathlines, mean temperature and heat transfer rate in the fluid and porous regions are obtained by using a perturbation method. An asymptotic solution for the fluid layer thickness is also presented. The problem is also solved by a numerical method and the results by asymptotic analysis, perturbation and numerical methods are obtained assuming a constant force squeezing state and are compared. It is shown that the results obtained by all the methods agree well with each other. The effects of various parameters such as Darcy number, Beavers–Joseph constant and magnetization parameter on the flow behaviours, contact time, mean temperature and heat transfer rate are investigated. The novel results showing the impact of using ferro-nanofluids in the two applications under consideration are presented. The results under special cases are further compared with the existing results in the literature and are found to agree well.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Nadim A. Diab ◽  
Issam A. Lakkis

This paper presents direct simulation Monte Carlo (DSMC) numerical investigation of the dynamic behavior of a gas film in a microbeam. The microbeam undergoes large amplitude harmonic motion between its equilibrium position and the fixed substrate underneath. Unlike previous work in literature, the beam undergoes large displacements throughout the film gap thickness and the behavior of the gas film along with its impact on the moving microstructure (force exerted by gas on the beam's front and back faces) is discussed. Since the gas film thickness is of the order of few microns (i.e., 0.01 < Kn < 1), the rarefied gas exists in the noncontinuum regime and, as such, the DSMC method is used to simulate the fluid behavior. The impact of the squeeze film on the beam is investigated over a range of frequencies and velocity amplitudes, corresponding to ranges of dimensionless flow parameters such as the Reynolds, Strouhal, and Mach numbers on the gas film behavior. Moreover, the behavior of compressibility pressure waves as a function of these dimensionless groups is discussed for different simulation case studies.


2020 ◽  
Vol 75 (6) ◽  
pp. 533-542
Author(s):  
Poosan Muthu ◽  
Vanacharla Pujitha

AbstractThe influence of concentration of solute particles on squeeze film lubrication between two poroelastic surfaces has been analyzed using a mathematical model. Newtonian viscous fluid is considered as a lubricant whose viscosity varies linearly with concentration of suspended solute particles. Convection-diffusion model is proposed to study the concentration of solute particles and is solved using finite difference method of Crank–Nicolson scheme. An iterative procedure is used to get the solution for concentration, pressure and velocity components in film region. It has been observed that load carrying capacity decreases as the concentration of solute particles in the fluid film decreases. Further, the concentration of suspended solute particles decreases as the permeability of the poroelastic plate increases and these results may be useful in understanding the mechanism of human joint.


Author(s):  
Tuyen Vu Nguyen ◽  
Weiguang Li

The dynamic and hydrodynamic properties of the pad in the fluid pivot journal bearing are investigated in this paper. Preload coefficients, recess area, and size gap, which were selected as input parameters to investigate, are important parameters of fluid pivot journal bearing. The pad’s pendulum angle, lubricant oil flow through the gap, and recess pressure which characterizes the squeeze film damper were investigated with different preload coefficients, recess area, and gap sizes. The computational models were established and numerical methods were used to determine the equilibrium position of the shaft-bearing system. Since then, the pendulum angle of the pad, liquid flow, and recess pressure were determined by different eccentricities.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 14 ◽  
Author(s):  
Hans Meeus ◽  
Jakob Fiszer ◽  
Gabriël Van De Velde ◽  
Björn Verrelst ◽  
Wim Desmet ◽  
...  

Turbomachine rotors, supported by little damped rolling element bearings, are generally sensitive to unbalance excitation. Accordingly, most machines incorporate squeeze film damper technology to dissipate mechanical energy caused by rotor vibrations and to ensure stable operation. When developing a novel geared turbomachine able to cover a large power range, a uniform mechanical drivetrain needs to perform well over the large operational loading range. Especially, the rotor support, containing a squeeze film damper and cylindrical roller bearing in series, is of vital importance in this respect. Thus, the direct objective of this research project was to map the performance of the envisioned rotor support by estimating the damping ratio based on the simulated and measured vibration response during run-up. An academic test rig was developed to provide an in-depth analysis on the key components in a more controlled setting. Both the numerical simulation and measurement results exposed severe vibration problems for an insufficiently radial loaded bearing due to a pronounced anisotropic bearing stiffness. As a result, a split first whirl mode arose with its backward component heavily triggered by the synchronous unbalance excitation. Hence, the proposed SFD does not function properly in the lower radial loading range. Increasing the static load on the bearing or providing a modified rotor support for the lower power variants will help mitigating the vibration issues.


Author(s):  
Hanumagowda Bannihalli Naganagowda ◽  
Sreekala Cherkkarathandayan Karappan

The aim of this paper is to presents a theoretical analysis on squeeze-film characteristics of a rough porous circular stepped plate in the vicinity of pressure-dependent viscosity and lubrication by micropolar fluids. A closed-form expression for non-dimensional pressure, load, and squeezing time is derived based on Eringen’s theory, Darcy’s equation, and Christensen’s stochastic approach. Results indicate that the effects of pressure-dependent viscosity, surface roughness, and micropolar fluids play an important role in increasing the load-carrying capacity and squeezing time, whereas the presence of porous media decreases the load-carrying capacity and squeezing time of the rough porous circular stepped plates.


Author(s):  
Weidong Yang ◽  
Menglong Liu ◽  
Linwei Ying ◽  
Xi Wang

This paper demonstrated the coupled surface effects of thermal Casimir force and squeeze film damping (SFD) on size-dependent electromechanical stability and bifurcation of torsion micromirror actuator. The governing equations of micromirror system are derived, and the pull-in voltage and critical tilting angle are obtained. Also, the twisting deformation of torsion nanobeam can be tuned by functionally graded carbon nanotubes reinforced composites (FG-CNTRC). A finite element analysis (FEA) model is established on the COMSOL Multiphysics platform, and the simulation of the effect of thermal Casimir force on pull-in instability is utilized to verify the present analytical model. The results indicate that the numerical results well agree with the theoretical results in this work and experimental data in the literature. Further, the influences of volume fraction and geometrical distribution of CNTs, thermal Casimir force, nonlocal parameter, and squeeze film damping on electrically actuated instability and free-standing behavior are detailedly discussed. Besides, the evolution of equilibrium states of micromirror system is investigated, and bifurcation diagrams and phase portraits including the periodic, homoclinic, and heteroclinic orbits are described as well. The results demonstrated that the amplitude of the tilting angle for FGX-CNTRC type micromirror attenuates slower than for FGO-CNTRC type, and the increment of CNTs volume ratio slows down the attenuation due to the stiffening effect. When considering squeeze film damping, the stable center point evolves into one focus point with homoclinic orbits, and the dynamic system maintains two unstable saddle points with the heteroclinic orbits due to the effect of thermal Casimir force.


Sign in / Sign up

Export Citation Format

Share Document