NO3 Reactivity and N2O5 Uptake Coefficient

Author(s):  
Haichao Wang
Keyword(s):  
1981 ◽  
Vol 20 (06) ◽  
pp. 274-278
Author(s):  
J. Liniecki ◽  
J. Bialobrzeski ◽  
Ewa Mlodkowska ◽  
M. J. Surma

A concept of a kidney uptake coefficient (UC) of 131I-o-hippurate was developed by analogy from the corresponding kidney clearance of blood plasma in the early period after injection of the hippurate. The UC for each kidney was defined as the count-rate over its ROI at a time shorter than the peak in the renoscintigraphic curve divided by the integral of the count-rate curve over the "blood"-ROI. A procedure for normalization of both curves against each other was also developed. The total kidney clearance of the hippurate was determined from the function of plasma activity concentration vs. time after a single injection; the determinations were made at 5, 10, 15, 20, 30, 45, 60, 75 and 90 min after intravenous administration of 131I-o-hippurate and the best-fit curve was obtained by means of the least-square method. When the UC was related to the absolute value of the clearance a positive linear correlation was found (r = 0.922, ρ > 0.99). Using this regression equation the clearance could be estimated in reverse from the uptake coefficient calculated solely on the basis of the renoscintigraphic curves without blood sampling. The errors of the estimate are compatible with the requirement of a fast appraisal of renal function for purposes of clinical diagknosis.


2010 ◽  
Vol 10 (6) ◽  
pp. 2965-2974 ◽  
Author(s):  
M. J. Tang ◽  
J. Thieser ◽  
G. Schuster ◽  
J. N. Crowley

Abstract. The uptake of NO3 and N2O5 to Saharan dust, ambient aerosols and soot was investigated using a novel and simple relative rate method with simultaneous detection of both NO3 and N2O5. The use of cavity ring down spectroscopy to detect both trace gases enabled the measurements to be carried out at low mixing ratios (<500 pptv or 1×1010 molecule cm−3). The uptake coefficient ratio, γ(NO3)/γ(N2O5), was determined to be 0.9±0.4 for Saharan dust, independent of relative humidity, NO3 or N2O5 mixing ratio and exposure time. Ambient (urban) aerosols showed a very limited capacity to take up N2O5 but were reactive towards NO3 with γ(NO3)/γ(N2O5)>15. A value of γ(NO3)/γ(N2O5)~1.5–3 was obtained when using candle generated soot. The relative rate obtained for Saharan dust can be placed on an absolute basis using our recently determined value of γ(N2O5)=1×10−2 to give γ(NO3)=9×10−3, which is significantly smaller than the single previous value. With the present uptake coefficient, reaction of NO3 with mineral dust will generally not contribute significantly to its NO3 loss in the boundary atmosphere or to the nitration of mineral dust.


2018 ◽  
Author(s):  
Anna L. Hodshire ◽  
Brett B. Palm ◽  
M. Lizabeth Alexander ◽  
Qijing Bian ◽  
Pedro Campuzano-Jost ◽  
...  

Abstract. Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09–0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and the GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60 nm in diameter. We find the best model-to-measurement agreement when the accommodation coefficient of the larger particles (Dp > 60 nm) was 0.1 or lower (with an accommodation coefficient of 1 for smaller particles), which suggests a diffusion limitation in the larger particles. When using these low accommodation-coefficient values, the model agrees with measurements when using a published H2SO4-organics nucleation mechanism and previously published values of rate constants for gas-phase oxidation reactions. Further, gas-phase fragmentation was found to have a significant impact upon the size distribution, and including fragmentation was necessary for accurately simulating the distributions in the OFR. The model was insensitive to the value of the reactive uptake coefficient on these aging timescales. Monoterpenes and isoprene could explain 24–95 % of the observed change in total volume of aerosol in the OFR, with ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) appearing to explain the remainder of the change in total volume. These results provide support to the mass-based findings of previous OFR studies, give insight to important size-distribution dynamics in the OFR, and enable the design of future OFR studies focused on new particle formation and/or microphysical processes.


2004 ◽  
Vol 64 (3b) ◽  
pp. 583-590 ◽  
Author(s):  
M. B. Cunha-Santino ◽  
I. Bianchini JR.

Assays were carried out to evaluate the dissolved oxygen uptake resulting from mineralization of humic substances (fulvic acid (FA) and humic acid (HA)) from different sources: sediment, dissolved organic matter (DOM) of 120-day decomposed aquatic macrophyte (Scirpus cubensis and Cabomba piauhyensis), and lagoon DOM. The experiments were also aimed at estimating the oxygen uptake coefficient of the mineralization. About 20-30 mg of substrate were added to 1.1 liters of water from Infernão Lagoon (21º33' to 21º37'S; 47º45' to 47º51'W). The solutions were aerated and the dissolved oxygen (DO) was monitored during 40 days. Dissolved organic carbon (DOC) and particulate organic carbon (POC) were estimated after 80 days of the experiment. Anaerobic processes were avoided by aerating the solutions. The results were fitted to a first-order kinetics model, from which the uptake of oxygen parameters was obtained. Oxygen consumption (OC) ranged from 4.24 mg L-1 (HA - S. cubensis) to 33.76 mg L-1 (FA - sediment). The highest deoxygenation coefficient (kD) was observed during mineralization of FA - DOM (0.299 day-1), followed in decreasing order by FA - S. cubensis, HA - sediment, HA - S. cubensis, FA - sediment, and FA - C. piauhyensis (0.282; 0.255; 0.178; 0.130, and 0.123 day-1, respectively). The carbon analyses indicated that the FA and HA samples at the end of the experiment presented a decay that varied from 15.23% to 42.35% and that the FA and HA conversions into POC were relatively low (from 0.76% to 3.94%).


2010 ◽  
Vol 10 (23) ◽  
pp. 11489-11500 ◽  
Author(s):  
A. Rouvière ◽  
M. Ammann

Abstract. The reactive uptake of ozone to deliquesced potassium iodide aerosol particles coated with linear saturated fatty acids (C9, C12, C15, C18 and C20) was studied. The experiments were performed in an aerosol flow tube at 293 K and atmospheric pressure. The uptake coefficient on pure deliquesced KI aerosol was γ = (1.10±0.20)×10−2 at 72–75% relative humidity. In presence of organic coatings, the uptake coefficient decreased significantly for long straight chain surfactants (≥C15), while it was only slightly reduced for the short ones (C9, C12). We linked the kinetic results to the monolayer properties of the surfactants, and specifically to the expected phase state of the monolayer formed (liquid expanded or liquid condensed state). The results showed a decrease of the uptake coefficient by 30% for C12, 85% for C15 and 50% for C18 in presence of a monolayer of a fatty acid at the equilibrium spreading pressure at the air/water interface. The variation among C12, C15 and C18 follows the density of the monolayer at equilibrium spreading pressure, which is highest for the C15 fatty acid. We also investigated the effect of organic films to mixed deliquesced aerosol composed of a variable mixture of KI and NaCl, which allowed determining the resistance exerted to O3 at the aqueous surface by the two longer chained surfactants pentadecanoic acid (C15) and stearic acid (C18). For these, the probability that a molecule hitting the surface is actually transferred to the aqueous phase underneath was βC15=6.8×10−4 and βC18 = 3.3×10−4, respectively. Finally, the effect of two-component coatings, consisting of a mixture of long and short chained surfactants, was studied qualitatively.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3075
Author(s):  
Štěpán Hýsek ◽  
Pavel Neuberger ◽  
Adam Sikora ◽  
Ondřej Schönfelder ◽  
Gianluca Ditommaso

This study provides a solution for the utilization of two waste materials, namely the residues of soft polyurethane foam from the production of mattresses and winter wheat husks. Thermal insulation panels with a nominal density of 50–150 kg/m3, bonded one-component moisture curing polyurethane adhesive, were developed, and the effect of the ratio between recycled polyurethane foam and winter wheat husk on internal bond strength, compressive stress at 10% strain, water uptake, coefficient of thermal conductivity, and volumetric heat capacity was observed. The developed composite materials make use of the very good thermal insulation properties of the two input waste materials, and the coefficient of thermal conductivity of the resulting boards achieves excellent values, namely 0.0418–0.0574 W/(m.K). The developed boards can be used as thermal insulation in the structures of environmentally friendly buildings.


2003 ◽  
Vol 3 (5) ◽  
pp. 1665-1673 ◽  
Author(s):  
M. Barcellos da Rosa ◽  
W. Behnke ◽  
C. Zetzsch

Abstract. This work presents the heterogeneous kinetics of the reaction of CH3SCH3 (dimethyl sulphide, DMS) with O3 (ozone) in aqueous solutions of different ionic strengths (0, 0.1 and 1.0M NaCl) using the wetted-wall flowtube (WWFT) technique. Henry's law coefficients of DMS on pure water and on different concentrations of NaCl (0.1M - 4.0M) in the WWFT from UV spectrophotometric measurements of DMS in the gas phase, using a numerical transport model of phase exchange, were determined to be H ±s (M atm-1) = 2.16±0.5 at 274.4 K, 1.47±0.3 at 283.4 K, 0.72±0.2 at 291 K, 0.57±0.1 at 303.4 K and 0.33±0.1 at 313.4 K on water, on 1.0M NaCl to be H = 1.57±0.4 at 275.7 K, 0.8±0.2 at 291 K and on 4.0M NaCl to be H = 0.44±0.1 at 275.7 K and 0.16±0.04 at 291 K, showing a significant effect of ionic strength, m, on the solubility of DMS according to the equation ln (H/M atm-1) = 4061 T-1 - 0.052 m2 - 50.9 m T-1 - 14.0. At concentrations of DMS(liq) above 50 mM, UV spectrophotometry of both O3(gas) and DMS(gas) enables us to observe simultaneously the reactive uptake of O3 on DMS solution and the gas-liquid equilibration of DMS along the WWFT. The uptake coefficient, g (gamma), of O3 on aqueous solutions of DMS, varying between 1 and 15·10-6, showed a square root-dependence on the aqueous DMS concentration (as expected for diffusive penetration into the surface film, where the reaction takes place in aqueous solution). The uptake coefficient was smaller on NaCl solution in accord with the lower solubility of O3. The heterogeneous reaction of O3(gas) with DMS(liq) was evaluated from the observations of the second order rate constant (kII) for the homogeneous aqueous reaction O3(liq) + DMS(liq) using a numerical model of radial diffusion and reactive penetration, leading to kII ± D kII (in units of 108 M-1 s-1) = 4.1±1.2 at 291.0 K, 2.15±0.65 at 283.4 K and 1.8±0.5 at 274.4 K. Aside from the expected influence on solubility and aqueous-phase diffusion coefficient of both gases there was no significant effect of ionic strength on kII, that was determined for 0.1M NaCl, leading to kII ± D kII (108 M-1 s-1) = 3.2±1.0 at 288 K, 1.7±0.5 at 282 K and 1.3±0.4 at 276 K, and for 1.0M NaCl, leading to 3.2±1.0 at 288 K, 1.3±0.4 at 282 K and 1.2±0.4 at 276 K, where the error limits are estimated from the output of the model calculations, taking the variability of individual runs at various DMS levels into account.


2010 ◽  
Vol 10 (6) ◽  
pp. 15023-15054
Author(s):  
A. Rouvière ◽  
M. Ammann

Abstract. The reactive uptake of ozone to deliquesced potassium iodide aerosol particles coated with linear saturated fatty acids (C9, C12, C15, C18 and C20) as surfactants was studied. The experiments were performed in an aerosol flow tube at 293 K and atmospheric pressure. The uptake coefficient on pure deliquesced KI aerosol was γ=(1.10±0.20)×10−2 at 72–75% relative humidity. In presence of organic coatings, the uptake coefficient decreased significantly for long straight chain surfactants (>C15), while it was only slightly reduced for the short ones (C9, C12). We linked the kinetic results to the monolayer properties of the surfactants, and specifically to the phase state of the monolayer formed (liquid expanded or liquid condensed state). We also investigated the effect of organic films to mixed deliquesced aerosol composed of a variable mixture of KI and NaCl, which allowed determining the resistance exerted to O3 at the aqueous surface by the two longer chained surfactants pentadecanoic acid (C15) and stearic acid (C18). Finally, the effect of two-component coatings, consisting of a mixture of long and short chained surfactants, was also studied.


2009 ◽  
Vol 9 (3) ◽  
pp. 12483-12517
Author(s):  
Y. Liu ◽  
Q. Ma ◽  
H. He

Abstract. The heterogeneous reaction on mineral dust was considered as a new sink of OCS in the troposphere. Here we compared the heterogeneous reactions of carbonyl sulfide (OCS) on the surface of α-Al2O3 and MgO and the effect of water on the reactions at 300 K using Knudsen cell – mass spectrometry, diffuse reflectance infrared Fourier transform spectroscopy, and temperature programmed reactions. H2S and CO2 were found to be hydrolysis products of OCS on both α-Al2O3 and MgO at ambient temperature. At low water vapor pressure, when water vapor pressure in the Knudsen cell reactor increased from 2.3×10−6 to 6.8×10−6 Torr, the initial true uptake coefficient of OCS on α-Al2O3 decreased from 4.70×10−7 to 3.59×10−7; while it increased from 5.19×10−7 to 6.48×10−7 on MgO under the same conditions. At high relative humidity, the observed uptake coefficients of OCS on α-Al2O3 and MgO decreased from 4.63×10−6 to 1.00×10−6 and from 9.72×10−5 to 7.68×10−5, respectively, when RH increased from 0.07 to 0.67 which corresponding to 1.7–15.9 Torr of water vapor pressure. In the RH region of 0.17–0.67, the average observed uptake coefficient of OCS on α-Al2O3 and MgO was equal to 8.34±2.19×10−7 and 8.19±0.48×10−5, respectively. The restrictive effect of water on the heterogeneous reaction of OCS on the surface of α-Al2O3 and MgO was found to be related to competitive adsorption between water and OCS molecules; while the promotive effect of water on the heterogeneous reaction of OCS on the surface of MgO at low coverage was ascribed to the formation of surface hydroxyl groups. When the environmental RH was greater than the RH of the monolayer, which occurred readily at the typical relative humidity of the troposphere, liquid membrane formed on the mineral dusts, especially, the basic liquid membrane formed on the basic component of mineral dusts may be the primary contributor to the heterogeneous hydrolysis of OCS in the troposphere.


Sign in / Sign up

Export Citation Format

Share Document