Investigation of General Welding Defects Found During Friction-Stir Welding (FSW) of Aluminium and Its Alloys

Author(s):  
Virendra Pratap Singh ◽  
Surendra Kumar Patel ◽  
Basil Kuriachen ◽  
Saurav Suman
2012 ◽  
Vol 488-489 ◽  
pp. 345-349
Author(s):  
G. Elatharasan ◽  
V.S. Senthil Kumar

Friction stir welding is a technique useful for joining aluminum alloys that are difficult to weld. In recent years, however the focuses has been on welding dissimilar aluminum alloys, and analyze their mechanical properties and micro-structural characteristics. In the present study, the less investigated welding of cast aluminum alloys is considered. Cast aluminum alloys, A356 and A413, commonly used in automotive and aerospace industries, were friction-stir welded and their mechanical properties and micro-structural characteristics were analyzed. On testing their welded region, no welding defects were observed. The welded region exhibited a maximum tensile strength of 90 N/mm2 and Vickers micro-hardness of 56.8. The micro-structural observations at the nugget region revealed a refined grain structure.


2012 ◽  
Vol 188 ◽  
pp. 144-149
Author(s):  
Marius Pop-Calimanu ◽  
Traian Fleșer

Jointing with rotary active element gains field through technological facilities offered nowadays. Own research have developed a model for studying the thermal fields and the plastic deformations of jointing composite materials Al/20%SiC combined by friction stir welding (FSW). In this article we will present the three-dimensional distribution of investigated fields, correlated with input parameters in the process. The process is performed with solid state components. The numerical results indicate that the maximum temperature in the FSW process increases with increasing speed of rotational tools. For high speed welding joint, should be increased, at the same time, the rotational speed to avoid welding defects.


2021 ◽  
pp. 009524432110588
Author(s):  
Mustafa Kemal Bilici

Modern thermoplastic materials are used in an expanding range of engineering applications, such as in the automotive industry, due to their enhanced stress-to-weight ratios, toughness, a very short time of solidification, and a low thermal conductivity. Recently, friction stir welding has started to be used in joining processes in these areas. There are many factors that affect weld performance and weld quality in friction stir welding (FSW). These factors must be compatible with each other. Due to the large number of welding variables in friction stir welding processes, it is very difficult to achieve high strength FSW joints, high welding performance, and control the welding process. Welding variables that form the basis of friction stir welding; machine parameters, tool variables, and material properties are divided into three main groups. Each welding variable has different effects on the weld joint. In this study, friction stir welds were made on high density polyethylene (HDPE) sheets with factors selected from machine parameters and welding tool variables. Although the welding performance, quality, and strength gave good results in some conditions, successful joints could not be realized in some conditions. In particular, welding defects occurring in the combination of HDPE material with FSW were investigated. Welding quality, defects, and performances were examined with macrostructure. In addition, the tensile strength values of some the joints were determined. The main purpose of this study is to determine the welding defects that occur at the joints. The causes of welding defects, prevention methods, and which weld variables caused were investigated. Welding parameters and welding defects caused by welding tools were examined in detail. In addition, the factors causing welding defects were changed in a wide range and the changes in the defects were observed.


2016 ◽  
Vol 28 (4) ◽  
pp. 187-210 ◽  
Author(s):  
D. J. Huggett ◽  
M. W. Dewan ◽  
M. A. Wahab ◽  
A. Okeil ◽  
T. W. Liao

2022 ◽  
Author(s):  
Jianzhong Ju ◽  
Zhili Long ◽  
Shuyuan Ye ◽  
Yongzhi Liu ◽  
Heng Zhao

Abstract Ultrasonic vibration used in friction stir welding (FSW) has shown advantages in reducing welding defects and improving welding quality. How to design an ultrasonic tool holder is a challenge because the holder is rotating in a confined space. In this study, we design a 20 kHz integrated ultrasonic tool holder in FSW. This novel configuration can be applied in general machining equipment. The elastic modulus is measured by non-destructive acoustic testing to attain the precise frequency. Three FSW transducers with alloy steel are designed by the modal analysis and the transducer prototypes are fabricated. The effect of pre-tightening force on transducer frequency is investigated, where the prestress of the piezoelectric stack instead of the torque is tested to achieve an optimal working frequency. The vibration of the transducers is measured by a Doppler Vibrometer System. It proved that the resonant frequencies are well consistent between simulation model and the experiment by the elastic modulus testing and the pre-tightening optimization. Moreover, the experiment demonstrates that the vibration amplitude is significantly different, even in a slight difference of steel material properties are adopted. The dynamic performance of the designed transducers is acceptable by the vibration measurement.


2021 ◽  
Vol 263 ◽  
pp. 02029
Author(s):  
Alla Katanina ◽  
Oleg Kornev ◽  
Aleksandr Shuvalov ◽  
Eugenia Sokolova

Comparison of welding influence on structural strength of Al-Mg-Si alloy (AW6082-T6), supplied with 10 mm thick sheets, is made. Within the research tension and impact tests of welding joints, made with argon-arc and friction stir welding, were carried out. During the research we observed the following: strength and plasticity decrease for welding joint zones, impact strength increase of weld metal in friction stir welding, welding defects influence on joint strength.


Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


Sign in / Sign up

Export Citation Format

Share Document