Tensile strength properties of particle boards at different temperatures and moisture contents

1983 ◽  
Vol 41 (7) ◽  
pp. 281-286 ◽  
Author(s):  
Yu DeXin ◽  
Birgit A. -L. Östman
Author(s):  
K.M. Sukhyy ◽  
◽  
E.A. Belyanovskaya ◽  
A. Nosova ◽  
M.K. Sukhyy ◽  
...  

A tin-bromine-containing resin was prepared by the interaction of industrial ED-16 epoxy resin with dibutyltin dibromide. A comparative study of the physical, mechanical and relaxation properties of composites based on the original and modified resins cured at different temperatures has been carried out. It has been shown that the composite materials based on a modified resin are characterized by lower values of tensile strength, elastic modulus, fracture work and glass transition temperature as compared with the samples based on the original epoxy resin. The effect of water on the deformation and strength properties of composites was studied. A complex mechanism of the influence of moisture sorbed by the polymer on the complex of properties has been established, which may result from the imposition of the effects of plasticization and additional curing of the epoxy matrix. At short exposure times, the effect of the sorbed liquid is mainly aimed at weakening the intermolecular interaction in the sample, as a result of which its tensile strength decreases and its deformation capacity increases. At long exposure times, post-curing processes prevail, leading to an increase in the crosslinking density and, as a consequence, to a decrease in deformation capacity and an increase in the strength index. It has been shown that epoxy composites containing resin modified with dibutyltin dibromide are characterized by increased fungitoxicity and fire resistance. The studied polymers can be considered as promising for the production of antifouling coatings for hydraulic equipment on their basis.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (11) ◽  
pp. 731-738 ◽  
Author(s):  
KARITA KINNUNEN-RAUDASKOSKI ◽  
KRISTIAN SALMINEN ◽  
JANI LEHMONEN ◽  
TUOMO HJELT

Production cost savings by lowering basis weight has been a trend in papermaking. The strategy has been to decrease the amount of softwood kraft pulp and increase use of fillers and recycled fibers. These changes have a tendency to lower strength properties of both the wet and dry web. To compensate for the strength loss in the paper, a greater quantity of strength additives is often required, either dosed at the wet end or applied to the wet web by spray. In this pilot-scale study, it was shown how strength additives can be effectively applied with foam-based application technology. The technology can simultaneously increase dryness after wet pressing and enhance dry and wet web strength properties. Foam application of polyvinyl alcohol (PVA), ethylene vinyl alcohol (EVOH), carboxymethyl cellulose (CMC), guar gum, starch, and cellulose microfibrils (CMF) increased web dryness after wet pressing up to 5.2%-units compared to the reference sample. The enhanced dewatering with starch, guar gum, and CMF was detected with a bulk increase. Additionally, a significant increase in z-directional tensile strength of dry web and and in-plane tensile strength properties of wet web was obtained. Based on the results, foam application technology can be a very useful technology for several applications in the paper industry.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1103
Author(s):  
Sara Sarraj ◽  
Małgorzata Szymiczek ◽  
Tomasz Machoczek ◽  
Maciej Mrówka

Eco-friendly composites are proposed to substitute commonly available polymers. Currently, wood–plastic composites and natural fiber-reinforced composites are gaining growing recognition in the industry, being mostly on the thermoplastic matrix. However, little data are available about the possibility of producing biocomposites on a silicone matrix. This study focused on assessing selected organic fillers’ impact (ground coffee waste (GCW), walnut shell (WS), brewers’ spent grains (BSG), pistachio shell (PS), and chestnut (CH)) on the physicochemical and mechanical properties of silicone-based materials. Density, hardness, rebound resilience, and static tensile strength of the obtained composites were tested, as well as the effect of accelerated aging under artificial seawater conditions. The results revealed changes in the material’s properties (minimal density changes, hardness variation, overall decreasing resilience, and decreased tensile strength properties). The aging test revealed certain bioactivities of the obtained composites. The degree of material degradation was assessed on the basis of the strength characteristics and visual observation. The investigation carried out indicated the impact of the filler’s type, chemical composition, and grain size on the obtained materials’ properties and shed light on the possibility of acquiring ecological silicone-based materials.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 300
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

This paper presents the water absorption and strength properties of short carbon fiber reinforced mortar (CFRM) composite. Four CFRM composites with 1%, 2%, 3%, and 4% short pitch-based carbon fibers were produced in this study. Normal Portland cement mortar (NCPM) was also prepared for use as the control mortar. The freshly mixed mortar composites were tested for workability, wet density, and entrapped air content. In addition, the hardened mortar composites were examined for compressive strength, splitting tensile strength, flexural strength, and water absorption at the ages of 7 and 28 days. The effects of different carbon fiber contents on the tested properties were observed. Test results showed that the incorporation of carbon fibers decreased the workability and wet density, but increased the entrapped air content in mortar composite. Most interestingly, the compressive strength of CFRM composite increased up to 3% carbon fiber content and then it declined significantly for 4% fiber content, depending on the workability and compaction of the mortar. In contrast, the splitting tensile strength and flexural strength of the CFRM composite increased for all fiber contents due to the greater cracking resistance and improved bond strength of the carbon fibers in the mortar. The presence of short pitch-based carbon fibers significantly strengthened the mortar by bridging the microcracks, resisting the propagation of these minute cracks, and impeding the growth of macrocracks. Furthermore, the water absorption of CFRM composite decreased up to 3% carbon fiber content and then it increased substantially for 4% fiber content, depending on the entrapped air content of the mortar. The overall test results suggest that the mortar with 3% carbon fibers is the optimum CFRM composite based on the tested properties.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


1940 ◽  
Vol 44 (349) ◽  
pp. 44-73
Author(s):  
Wilhelm Kuech

Laminated materials incorporating plastics seem to be especially well suited lor highly stressed aircraft components, by reason of their good strength properties. Paper, fabric and wood veneers treated with plastics on a phenolic basis were tested with regard to their strength, especially in bending, shear, absorbed energy in impact bending, notching strength and in their resistance against moisture. Further, the behaviour of compressed plastics was studied at different temperatures under static and dynamic loads. A part of the research was extended to pure phenol resin and to thermoplastics based on methacrylate and polyvinylchloride. The bonding properties of laminated compressed plastics were established. Concluding, some experiments relating to the practical manufacture of aeroplane components are communicated.


2012 ◽  
Vol 159 ◽  
pp. 346-350
Author(s):  
Shu Min Liu ◽  
Jian Bin Zhang

The elevated temperature short-time tensile test with the sample of casting low nickel stainless steel was conducted on SHIMADZU AG-10 at ten temperatures 300, 500, 600, 700, 800, 950, 1000, 1050, 1100, and 1250°C, respectively. The stress-strain curves with the thermal deformation at the different temperatures, the peak stress intensity-temperature curve, and the reduction percentage of cross sectional area-temperature curve were obtained. Metallographic test samples were prepared and the morphology of deforming zone was observed by optical microscopy. The experimental results show that the tensile strength of the test samples decreases with increasing temperature. From 300 to 800°C, the work harding occurred and the tensile strength increases with increasing strain. The work softening occurred and the tensile strength decreases with increasing strain at temperatures of 800 to 1250°C. The minimum value of reduction percentage was measured at 800 °C. The austenite and delta-ferrite are the main phase in the tested samples. When the tensile temperatures are increased to 1200°C, the delta-ferrite became thinner and broke down to be spheroidized.


2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


2018 ◽  
Vol 25 (1) ◽  
pp. 15-18
Author(s):  
Md. Mahabubur Rahaman ◽  
◽  
Khurshid Akhter ◽  
S. Hossain ◽  
Md. Rakibul Islam ◽  
...  

The study was conducted to find out the suitability of making particleboard using nipa palm (Nypa fruticans) stem wood and rajkoroi (Albizia richardiana) wood chips. Particleboards were fabricated at six different ratios of nipa palm stem and rajkoroi wood chips such as 100:0, 75:25, 50:50, 25:75, 10:90 and 0:100. Characteristics of particleboards such as modulus of rupture, internal bond strength, water absorption, thickness swelling and moisture content were measured. Results shows that particleboards made from 100% rajkoroi wood chips have the highest static bending properties and highest tensile strength properties of other particleboards but 100% nipa palm stem wood chips have the lowest static bending and lowest tensile strength properties of other particleboards. 10% nipa palm stem wood chips particleboard have the highest bending strength and tensile strength is better than 100% nipa palm stem wood chips and other mixing chips of particleboards. Mechanical, water resistance and dimensional stability properties were tested according to Indian standard specification. Tensile strength passed the British and German standard specification and nearest to Bureau of Indian Standard, bending strength was found nearest to Indian Standard but lower than German and British Standard specification. Strength property of rajkoroi wood chips particleboard is higher than nipa palm steam wood chips particleboard but dimensional stability is lower than nipa palm steam wood chips particleboard.


Sign in / Sign up

Export Citation Format

Share Document